1 Historical Review

2 Definition and Classification of Reciprocating Piston Engines
 2.1 Definitions
 2.2 Potentials for Classification
 2.2.1 Combustion Processes
 2.2.2 Fuel
 2.2.3 Working Cycles
 2.2.4 Mixture Generation
 2.2.5 Gas Exchange Control
 2.2.6 Supercharging
 2.2.7 Configuration
 2.2.8 Ignition
 2.2.9 Cooling
 2.2.10 Load Adjustment
 2.2.11 Applications
 2.2.12 Speed and Output Graduations

3 Characteristics
 3.1 Piston Displacement and Bore-to-Stroke Ratio
 3.2 Compression Ratio
 3.3 Rotational Speed and Piston Speed
 3.4 Torque and Power
 3.5 Fuel Consumption
 3.6 Gas Work and Mean Pressure
 3.7 Efficiency
 3.8 Air Throughput and Cylinder Charge
 3.9 Air-Fuel Ratio

4 Maps
 4.1 Consumption Maps
 4.2 Emission Maps
 4.3 Ignition and Injection Maps
 4.4 Exhaust Gas Temperature Maps

5 Thermodynamic Fundamentals
 5.1 Cyclical Processes
 5.2 Comparative Processes
 5.2.1 Simple Model Processes
 5.2.1.1 Constant Volume Cycle
 5.2.1.2 Constant Pressure Cycle
 5.2.1.3 Seiliger Process
 5.2.1.4 Comparison of the Cyclical Processes
 5.2.2 Energy Losses

5.3 Open Comparative Processes
 5.3.1 Work Cycle of the Perfect Engine
 5.3.1.1 Elements of Calculation
 5.3.1.2 Work of the Perfect Engine
 5.3.1.3 Effectiveness of the Perfect Engine
 5.3.1.4 Exergy Loss in the Perfect Cycle
 5.3.2 Approximation of the Real Working Cycle
 5.3.2.1 Models to Determine Combustion Behavior

5.4 Efficiency

5.5 Energy Balance in the Engine
 5.5.1 Balance Equation

6 Crank Gears
 6.1 Crankshaft Drive
 6.1.1 Design and Function
 6.1.2 Forces Acting on the Crankshaft Drive
 6.1.3 Tangential Force Characteristic and Average Tangential Force
 6.1.4 Inertial Forces
 6.1.4.1 Inertial Forces in Single-Cylinder Crank Gears
 6.1.4.2 Inertial Forces in a Two-Cylinder V Crank Gear
 6.1.4.3 Inertial Forces and Inertial Torque in Multicylinder Crank Gears
 6.1.4.4 Example
 6.1.5 Mass Balancing
 6.1.5.1 Balancing Single-Cylinder Crank Gears
 6.1.5.2 Balancing Multicylinder Crank Gears
 6.1.6 Internal Torque
 6.1.7 Throw and Firing Sequences

6.2 Rotational Oscillations
 6.2.1 Fundamentals
 6.2.2 Reduction of the Machine System
 6.2.3 Natural Frequencies and Modes of Natural Vibration
 6.2.4 Exciter Forces and Exciter Work
 6.2.5 Measures to Reduce Crankshaft Excursions
 6.2.6 Two-Mass Flywheels
7 Engine Components

7.1 Pistons / Wristpins / Wristpin Circlips

7.1.1 Pistons

7.1.1.1 Requirements and Functions
7.1.1.2 Engineering Designs
7.1.1.3 Offsetting the Boss Bore
7.1.1.4 Installation Play and Running Play
7.1.1.5 Piston Masses
7.1.1.6 Operating Temperatures
7.1.1.7 Piston Cooling
7.1.1.8 Piston Designs
7.1.1.9 Piston Manufacture
7.1.1.10 Protection of Running Surfaces/Surfaces
7.1.1.11 Piston Materials

7.1.2 Wristpins

7.1.2.1 Functions
7.1.2.2 Designs
7.1.2.3 Requirements and Dimensioning
7.1.2.4 Materials

7.1.3 Wristpin Snap Rings

7.2 Connecting Rod

7.2.1 Design of the Connecting Rod
7.2.2 Loading
7.2.3 Conrod Bolts
7.2.4 Design
7.2.4.1 Conrod Ratio
7.2.5 Conrod Manufacture
7.2.5.1 Manufacturing the Blank
7.2.5.2 Machining
7.2.6 Conrod Materials

7.3 Piston Rings

7.3.1 Embodiments
7.3.1.1 Compression Rings
7.3.1.2 Oil Control Rings
7.3.2 Ring Combinations
7.3.3 Characterizing Features
7.3.4 Manufacturing
7.3.4.1 Shaping
7.3.4.2 Wear-Protection Layers
7.3.4.3 Surface Treatments
7.3.4.4 Contact Surface Shapes for Piston Rings
7.3.4.5 Materials for Piston Rings
7.3.5 Loading, Damage, Wear, Friction

7.4 Engine Block

7.4.1 Assignments and Functions
7.4.2 Engine Block Design
7.4.2.1 Types of Engine Blocks
7.4.3 Optimizing Acoustic Properties
7.4.4 Minimizing Engine Block Mass
7.4.5 Casting Processes for Engine Blocks

7.5 Cylinders

7.5.1 Cylinder Designs
7.5.1.1 Monolithic Design
7.5.1.2 Insertion Technique
7.5.1.3 Bonding Technology
7.5.2 Machining Cylinder Running Surfaces
7.5.3 Cylinder Cooling
7.5.3.1 Water Cooling
7.5.3.2 Air Cooling

7.6 Oil Pan
7.6.1 Oil Pan Design

7.7 Crankcase Venting

7.7.1 Conventional Crankcase Ventilation
7.7.2 Positive Crankcase Ventilation (PVC) System
7.7.3 Vacuum-Regulated Crankcase Ventilation

7.8 Cylinder Head

7.8.1 Basic Design for the Cylinder Head
7.8.1.1 Layout of the Basic Geometry
7.8.1.2 Determining the Manufacturing Processes
7.8.1.3 Layout of the Gas Exchange Components
7.8.1.4 Variable Valve Control
7.8.2 Cylinder Head Engineering
7.8.2.1 Laying out the Rough Dimensions
7.8.2.2 Combustion Chamber and Port Design
7.8.2.3 Valve Train Design
7.8.2.4 Cooling Concepts
7.8.2.5 Lubricating Oil Management
7.8.2.6 Engineering Design Details
7.8.2.7 Engineering in Construction Steps
7.8.2.8 Using CAD in Engineering
7.8.2.9 Computer-Assisted Design
7.8.3 Casting Process
7.8.3.1 Sand Casting
7.8.3.2 Die Casting
7.8.3.3 Lost-Foam Process (Full Mold Process)
7.8.3.4 Pressure Die-Casting Process
7.8.4 Model and Mold Construction
7.8.5 Machining and Quality Assurance
7.8.5.1 Mass-Production Manufacture
7.8.5.2 Prototype Manufacturing
7.8.5.3 Quality Assurance for Cylinder Heads
7.8.6 Shapes Implemented for Cylinder Heads
7.8.6.1 Cylinder Heads for Gasoline Engines
7.8.6.2 Cylinder Heads for Diesel Engines
7.8.6.3 Special Cylinder Head Designs
7.8.7 Perspectives in Cylinder Head Technology
7.9 Crankshafts
7.9.1 Function in the Vehicle
7.9.1.1 The Crankshaft in the Reciprocating Piston Engine
7.9.1.2 Requirements
7.9.2 Manufacturing and Properties
7.9.2.1 Process and Materials
7.9.2.2 Materials Properties for Crankshafts
7.9.3 Lightweight Engineering and Future Trends
7.9.3.1 Hollow Cast Crankshafts
7.9.3.2 ADI Austempered Ductile Iron
7.9.3.3 Increasing Component Strength through Postcasting Treatment
7.10 Valve Train Components
7.10.1 Valve Train
7.10.1.1 Direct Drive Valve Trains
7.10.1.2 Indirect Drive Valve Trains
7.10.1.3 Hydraulic Valve Play Compensation
7.10.1.4 Mechanical Valve Play Adjustment
7.10.1.5 Future Trends
7.10.2 Belt Tensioning Systems, Idler and Deflection Pulleys
7.10.2.1 Introduction
7.10.2.2 Automatic Belt Tensioning System for Synchronous Belt Drives
7.10.2.3 Idler and Deflection Pulleys for Synchronous Belt Drives
7.10.2.4 Prospects for the Future
7.10.3 Chain Tensioning and Guide Systems
7.10.3.1 Introduction
7.10.3.2 Chain Tensioning Element
7.10.3.3 Tensioning and Guide Rails
7.11 Valves
7.11.1 Functions and Explanation of Terms and Concepts
7.11.2 Types of Valves and Manufacturing Techniques
7.11.2.1 Monometallic Valves
7.11.2.2 Bimetallic Valves
7.11.2.3 Hollow Valve
7.11.3 Embodiments
7.11.3.1 Valve Head
7.11.3.2 Valve Seat
7.11.3.3 Valve Stem
7.11.4 Valve Materials
7.11.4.1 Heat Treatment
7.11.4.2 Surface Finishing
7.11.5 Special Valve Designs
7.11.5.1 Exhaust Control Valves
7.11.6 Valve Keepers
7.11.6.1 Tasks and Functioning
7.11.6.2 Manufacturing Techniques
7.11.7 Valve Rotation Devices
7.11.7.1 Function
7.11.7.2 Designs and Functioning
7.12 Valve Springs
7.13 Valve Seat Inserts
7.13.1 Introduction
7.13.2 Demands Made on Valve Seat Inserts
7.13.2.1 Loading on Valve Seat Inserts
7.13.2.2 Materials and Their Properties
7.13.2.3 Geometry and Tolerances
7.13.2.4 Cylinder Head Geometry and Assembly
7.14 Valve Guides
7.14.1 Requirements for Valve Guides
7.14.1.1 Loading on Valve Guides
7.14.2 Materials and Properties
7.14.2.1 Materials
7.14.2.2 Materials Properties
7.14.3 Geometry of the Valve Guide
7.14.4 Installing in the Cylinder Head
7.15 Oil Pump
7.15.1 Overview of Oil Pump Systems
7.15.1.1 Internal Gear Pump
7.15.1.2 External Gear Pump
7.15.1.3 Vane Pumps
7.15.1.4 Benefits and Drawbacks of Individual Pump Systems
7.15.2 Regulation Principles
7.15.2.1 Direct Regulation
7.15.2.2 Indirect Regulation
7.15.2.3 Regulation in the Clean Oil Stream
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.15.2.4</td>
<td>Two-Stage or Multistage Regulation</td>
</tr>
<tr>
<td>7.15.2.5</td>
<td>Two-Stage Regulation Pump</td>
</tr>
<tr>
<td>7.15.2.6</td>
<td>Regulated Internal Gear Pump</td>
</tr>
<tr>
<td>7.15.2.7</td>
<td>Regulated External Gear Pump</td>
</tr>
<tr>
<td>7.15.2.8</td>
<td>Regulated Vane Pump</td>
</tr>
<tr>
<td>7.15.3</td>
<td>Engineering Basics</td>
</tr>
<tr>
<td>7.15.3.1</td>
<td>Crankshaft Pump</td>
</tr>
<tr>
<td>7.15.3.2</td>
<td>Sump Pump</td>
</tr>
<tr>
<td>7.15.3.3</td>
<td>Key Oil Pump Values Taken from Practice</td>
</tr>
<tr>
<td>7.15.3.4</td>
<td>Comparison between Crankshaft and Sump Pumps</td>
</tr>
<tr>
<td>7.15.3.5</td>
<td>Cavitation and Noise Emissions</td>
</tr>
<tr>
<td>7.15.4</td>
<td>Calculation</td>
</tr>
<tr>
<td>7.15.4.1</td>
<td>Numerical Simulation of Flow — CFD</td>
</tr>
<tr>
<td>7.15.4.2</td>
<td>One-Dimensional Simulation of Flow Grids</td>
</tr>
<tr>
<td>7.15.5</td>
<td>Reduction of Mass</td>
</tr>
<tr>
<td>7.15.6</td>
<td>Factors Influencing Camshaft Loading</td>
</tr>
<tr>
<td>7.16</td>
<td>Camshaft</td>
</tr>
<tr>
<td>7.16.1</td>
<td>Camshaft Functions</td>
</tr>
<tr>
<td>7.16.2</td>
<td>Valve Train Configurations</td>
</tr>
<tr>
<td>7.16.3</td>
<td>Structure of a Camshaft</td>
</tr>
<tr>
<td>7.16.4</td>
<td>Technologies and Materials</td>
</tr>
<tr>
<td>7.16.4.1</td>
<td>Cast Camshaft</td>
</tr>
<tr>
<td>7.16.4.2</td>
<td>Assembled Camshaft</td>
</tr>
<tr>
<td>7.16.4.3</td>
<td>Steel Camshaft</td>
</tr>
<tr>
<td>7.16.4.4</td>
<td>Materials Properties and Recommended Matches</td>
</tr>
<tr>
<td>7.16.5</td>
<td>Thermodynamics in Air Intake Systems</td>
</tr>
<tr>
<td>7.16.6</td>
<td>Acoustics</td>
</tr>
<tr>
<td>7.17</td>
<td>Chain Drive</td>
</tr>
<tr>
<td>7.17.1</td>
<td>Chain Designs</td>
</tr>
<tr>
<td>7.17.2</td>
<td>Typical Chain Values</td>
</tr>
<tr>
<td>7.17.3</td>
<td>Sprockets</td>
</tr>
<tr>
<td>7.17.4</td>
<td>Chain Guide Elements</td>
</tr>
<tr>
<td>7.18</td>
<td>Belt Drives</td>
</tr>
<tr>
<td>7.18.1</td>
<td>Belt Drives Used to Drive Camshafts</td>
</tr>
<tr>
<td>7.18.1.1</td>
<td>Synchronous Belt Drive</td>
</tr>
<tr>
<td>7.18.1.2</td>
<td>Synchronous Belt Drive System</td>
</tr>
<tr>
<td>7.18.1.3</td>
<td>Synchronous Belt Dynamics</td>
</tr>
<tr>
<td>7.18.1.4</td>
<td>Application Examples</td>
</tr>
<tr>
<td>7.18.2</td>
<td>Toothed V-Belt Drive to Power Auxiliary Units</td>
</tr>
<tr>
<td>7.18.2.1</td>
<td>Micro-V® Drive Belts</td>
</tr>
<tr>
<td>7.18.2.2</td>
<td>Auxiliary Component Drive System</td>
</tr>
<tr>
<td>7.18.2.3</td>
<td>Application Examples</td>
</tr>
<tr>
<td>7.19</td>
<td>Bearings in Internal Combustion Engines</td>
</tr>
<tr>
<td>7.19.1</td>
<td>Fundamentals</td>
</tr>
<tr>
<td>7.19.1.1</td>
<td>Radial Bearing</td>
</tr>
<tr>
<td>7.19.1.2</td>
<td>Axial Bearing</td>
</tr>
<tr>
<td>7.19.2</td>
<td>Calculating and Dimensioning Engine Bearings</td>
</tr>
<tr>
<td>7.19.2.1</td>
<td>Loading</td>
</tr>
<tr>
<td>7.19.2.2</td>
<td>Bearing Journal Displacement Path</td>
</tr>
<tr>
<td>7.19.2.3</td>
<td>Elastohydrodynamic Calculation</td>
</tr>
<tr>
<td>7.19.2.4</td>
<td>Major Dimensions: Diameter, Width</td>
</tr>
<tr>
<td>7.19.2.5</td>
<td>Oil Feed Geometry</td>
</tr>
<tr>
<td>7.19.2.6</td>
<td>Precision Dimensions</td>
</tr>
<tr>
<td>7.19.3</td>
<td>Bearing Materials</td>
</tr>
<tr>
<td>7.19.3.1</td>
<td>Bearing Metals</td>
</tr>
<tr>
<td>7.19.3.2</td>
<td>Overlays</td>
</tr>
<tr>
<td>7.19.4</td>
<td>Types of Bearings — Structure, Load-Bearing Capacity, Use</td>
</tr>
<tr>
<td>7.19.4.1</td>
<td>Solid Bearings</td>
</tr>
<tr>
<td>7.19.4.2</td>
<td>Two-Material Bearing</td>
</tr>
<tr>
<td>7.19.4.3</td>
<td>Three-Material Bearing</td>
</tr>
<tr>
<td>7.19.4.4</td>
<td>Miba™ Grooved Bearings</td>
</tr>
<tr>
<td>7.19.4.5</td>
<td>Sputter Bearing</td>
</tr>
<tr>
<td>7.19.5</td>
<td>Bearing Failure</td>
</tr>
<tr>
<td>7.19.5.1</td>
<td>Progress of Damage</td>
</tr>
<tr>
<td>7.19.5.2</td>
<td>Types of Bearing Damage</td>
</tr>
<tr>
<td>7.19.6</td>
<td>Prospects for the Future</td>
</tr>
<tr>
<td>7.20</td>
<td>Intake Systems</td>
</tr>
<tr>
<td>7.20.1</td>
<td>Thermodynamics in Air Intake Systems</td>
</tr>
<tr>
<td>7.20.2</td>
<td>Acoustics</td>
</tr>
<tr>
<td>7.21</td>
<td>Sealing Systems</td>
</tr>
<tr>
<td>7.21.1</td>
<td>Cylinder Head Sealing Systems</td>
</tr>
<tr>
<td>7.21.1.1</td>
<td>Ferrolastic Elastomer Head Gaskets</td>
</tr>
<tr>
<td>7.21.1.2</td>
<td>Metal-Elastomer Head Gaskets</td>
</tr>
<tr>
<td>7.21.1.3</td>
<td>Metaloflex® Layered Metal Head Gaskets</td>
</tr>
<tr>
<td>7.21.1.4</td>
<td>Prospects for the Future</td>
</tr>
<tr>
<td>7.21.2</td>
<td>Special Seals</td>
</tr>
<tr>
<td>7.21.2.1</td>
<td>Functional Description of the Flat Seal</td>
</tr>
<tr>
<td>7.21.2.2</td>
<td>Elastomer Seals</td>
</tr>
<tr>
<td>7.21.2.3</td>
<td>Metal-Elastomer Seals</td>
</tr>
<tr>
<td>7.21.2.4</td>
<td>Special Metaloseal® Gaskets</td>
</tr>
<tr>
<td>7.21.2.5</td>
<td>Prospects for the Future</td>
</tr>
<tr>
<td>7.21.3</td>
<td>Elastomer Sealing Systems</td>
</tr>
<tr>
<td>7.21.3.1</td>
<td>Elastomer Seals</td>
</tr>
<tr>
<td>7.21.3.2</td>
<td>Metal-Elastomer Gaskets</td>
</tr>
</tbody>
</table>
10.4.3.1 Mechanical Systems
10.4.3.2 Hydraulically Actuated Systems
10.4.3.3 Electromechanical Systems
10.5 Pulse Charges and Load Control of Reciprocating Piston Engines Using an Air Stroke Valve
10.5.1 Introduction
10.5.2 Design and Operation of the Air Stroke Valve
10.5.3 Options for Influencing the Charge Cycle
10.5.3.1 Dynamic Supercharging in Induction Engines (Pulse Charge)
10.5.3.2 Supporting and Recharging Supercharged Engines
10.5.3.3 Throttle-Free Load Control
10.5.3.4 EGR Control
10.5.3.5 Hot Charging
10.5.3.6 Cold Charging Supercharged Engines
10.5.3.7 Cylinder Shutoff
10.5.4 Prototype for Engine Tests
10.5.4.1 Parameters and Design
10.5.4.2 Implemented Prototype
10.5.5 Demonstration of Function in Single-Cylinder Engines
10.5.5.1 Increasing Air Expenditure by Dynamic Supercharging
10.5.5.2 Increasing Torque by Dynamic Supercharging
10.5.5.3 Required Air Stroke Valve Operating Times in Dynamic Supercharging
10.5.5.4 Hot Charging
10.5.6 Summary and Outlook

11 Supercharging of Internal Combustion Engine
11.1 Mechanical Supercharging
11.2 Exhaust Gas Turbocharging
11.3 Intercooling
11.4 Interaction of Engine and Compressor
11.4.1 Four-Stroke Engine in the Compressor Map
11.4.2 Mechanical Supercharging
11.4.3 Exhaust Gas Turbocharging
11.5 Dynamic Behavior
11.6 Additional Measures for Supercharged Internal Combustion Engines
11.6.1 SI Engines
11.6.2 Diesel Engines

12 Mixture Formation and Related Systems
12.1 Internal Mixture Formation
12.2 External Mixture Formation

12.3 Mixture Formation using Carburetors
12.3.1 Mode of Operation of the Carburetor
12.3.2 Designs
12.3.2.1 Number of Intake Air Ducts
12.3.2.2 Position of the Intake Air Duct
12.3.2.3 Designs for Special Applications
12.3.3 Important Auxiliary Systems on Carburetors
12.3.4 Electronically Controlled Carburetors
12.3.5 Constant Vacuum Carburetor
12.3.6 Operating Behavior
12.3.7 Lambda Closed-Loop Control

13 Ignition
13.1 Spark-Ignition Engine
13.1.1 Introduction to Ignition
13.1.2 Requirements of the Ignition System
13.1.3 Minimum Ignition Energy
13.1.4 Fundamentals of Spark Ignition
13.1.4.1 Phases of the Spark
13.1.4.2 Energy Transmission Efficiency
13.1.5 Coil Ignition System (Inductive)
13.1.6 Other Ignition Systems
13.1.7 Summary and Outlook
13.2 Spark Plugs
- 13.2.1 Demands on Spark Plugs
- 13.2.2 Design
- 13.2.3 Heat Range
- 13.2.4 Required Voltage for Ignition
- 13.2.5 Ignition Characteristic (and Mixture Ignition)
- 13.2.6 Wear
- 13.2.7 Application

13.3 Diesel Engines
- 13.3.1 Autoignition and Combustion
- 13.3.2 Diesel Engine Cold Starts
 - 13.3.2.1 Important Influential Parameters
 - 13.3.2.2 Start Evaluation Criteria
- 13.3.3 Components for Supporting Cold Starts
 - 13.3.3.1 Glow Plug Systems
 - 13.3.3.2 Heating Flange
- 13.3.4 Outlook
 - 13.3.4.1 Combined Systems
 - 13.3.4.2 Measurement of Ionic Current
 - 13.3.4.3 Regulated Glow Plug Systems

13.4 Ignition
- 13.4.1 Ignition Principle
- 13.4.2 Ignition Timing
- 13.4.3 Ignition Quality

13.5 Knock
- 13.5.1 Knock Detection
- 13.5.2 Knock Mitigation

13.6 Emissions
- 13.6.1 Emission Standards
- 13.6.2 Emission Control Systems

13.7 Fuel Systems
- 13.7.1 Fuel Supply
- 13.7.2 Fuel Delivery
- 13.7.3 Fuel Injection

13.8 Mechanics
- 13.8.1 Crankshaft
- 13.8.2 Piston
- 13.8.3 Connecting Rod

13.9 Torque Generation
- 13.9.1 Torque Calculation
- 13.9.2 Torque Generation

13.10 Cooling Systems
- 13.10.1 Coolant System
- 13.10.2 Oil System

13.11 Lubrication Systems
- 13.11.1 Engine Oil
- 13.11.2 Oil Supply System

13.12 Lubrication Elements
- 13.12.1 Oil Pump
- 13.12.2 Oil Filter

13.13 Maintenance and Repair
- 13.13.1 Preventive Maintenance
- 13.13.2 Repair Techniques

13.14 Safety
- 13.14.1 Safety Measures
- 13.14.2 Accident Prevention

13.15 Research and Development
- 13.15.1 New Engine Technologies
- 13.15.2 Test and Development Methods

14 Combustion
- 14.1 Principles
 - 14.1.1 Fuels
 - 14.1.2 Oxidation of Hydrocarbons
- 14.2 Combustion in SI Engines
 - 14.2.1 Mixture Formation
 - 14.2.1.1 Intake Manifold Injection
 - 14.2.1.2 Direct Injection
 - 14.2.2 Ignition
 - 14.2.3 Combustion Process
 - 14.2.3.1 Flame Propagation
 - 14.2.3.2 Mean Pressure and Fuel Consumption
 - 14.2.3.3 Cyclic Fluctuations
 - 14.2.3.4 Engine Knock
- 14.3 Combustion in Diesel Engines
 - 14.3.1 Mixture Formation
 - 14.3.1.1 Phenomenology
 - 14.3.1.2 Fuel Jet Propagation
 - 14.3.2 Autoignition
 - 14.3.3 Combustion Process
 - 14.3.3.1 Phenomenological Description
 - 14.3.3.2 Equivalent Combustion Curves
- 14.4 Heat Transfer
 - 14.4.1 Heat Transfer Model
 - 14.4.2 Determination of Heat Transfer Coefficients

15 Combustion Systems
- 15.1 Combustion Systems for Diesel Engines
 - 15.1.1 Diesel Combustion
 - 15.1.2 Diesel Four-Stroke Combustion Systems
 - 15.1.2.1 Methods using Indirect Fuel Injection (IDI)
 - 15.1.2.2 Direct Fuel Injection Method (DI)
 - 15.1.2.3 Comparison of Combustion Systems
 - 15.1.2.4 Special Methods and Features
- 15.2 Spark-Injection Engines
 - 15.2.1 Combustion Processes in Port Fuel Injection (PFI) Engines
 - 15.2.2 Combustion Process of Direct Injection Spark Ignition (DISI) Engines
- 15.3 Two-Stroke Diesel Engines
- 15.4 Two-Stroke SI Engines

16 Electronics and Mechanics for Engine Management and Transmission Shift Control
- 16.1 Environmental Demands
- 16.2 Stand-Alone Products (Separate Devices)
- 16.3 Connecting Approaches
- 16.4 Integrated Products (MTM = Mechatronic Transmission Module)
- 16.5 Electronic Design, Structures, and Components
 - 16.5.1 Basic Structure
 - 16.5.2 Electronic Components
 - 16.5.2.1 IC Knocking Input Filter Component
 - 16.5.2.2 Driver Stage Component
 - 16.5.2.3 Microcontroller
 - 16.5.2.4 Voltage Regulator
- 16.6 Electronics in the Electronic Control Unit
 - 16.6.1 General Description
 - 16.6.2 Signal Conditioning
 - 16.6.3 Signal Evaluation
 - 16.6.4 Signal Output
 - 16.6.5 Power Supply
 - 16.6.6 CAN Bus Interface
 - 16.6.7 Electronics for Transmission ECUs
- 16.7 Software Structures
 - 16.7.1 Task of the Software In Controlling Engines
 - 16.7.2 Demands on the Software
 - 16.7.3 The Layer Approach to Software
 - 16.7.4 The Software Development Process
- 16.8 Torque-Based Functional Structure for Engine Management
 - 16.8.1 Model-Based Functions Using the Example of Intake Manifold Charging
- 16.9 Functions
16.9.1 λ Regulation
16.9.2 Antijerk Function
16.9.3 Throttle Valve Control
16.9.4 Knocking Control
16.9.5 “On-Board” Diagnosis (OBD)
 16.9.5.1 Self-Diagnosis Tasks
 16.9.5.2 Monitoring the Catalytic Converter
16.9.6 Safety Approaches

17 The Powertrain
17.1 Powertrain Architecture
17.2 The Motor-Vehicle’s Longitudinal Dynamics
17.3 Transmission Types
17.4 Power Level and Signal Processing Level
17.5 Transmission Management
 17.5.1 Functions
 17.5.1.1 Overview
 17.5.1.2 Driving or Gearshift Strategy
 17.5.1.3 Automatic Transmissions with Planetary Gears and Torque Converter
 17.5.1.4 Automated Stick-Shift Transmissions
 17.5.1.5 Continuously Variable Transmissions (CVT)
17.6 Integrated Powertrain Management (IPM®)
17.7 The Integrated Starter-Motor/Alternator (ISG)
 17.7.1 ISG: A System Overview
 17.7.1.1 Torque Structure in a Motor Vehicle
 17.7.1.2 Starter-Motor/Alternator Structure
 17.7.1.3 Description of the Starter-Motor/Alternator’s Most Important Modes of Use
17.7.2 Converters (Powertrain Management and Voltage Converters)
 17.7.2.1 Requirements Made on the Electronics from a System Viewpoint
 17.7.2.2 Function Groups and Design Criteria
 17.7.2.3 Cooling
 17.7.2.4 Classification of the Converter’s Power Electronics
 17.7.2.5 DC/DC Converters
17.7.3 Electrical Machine
 17.7.3.1 Design Criteria
 17.7.3.2 Simulation Tools
 17.7.3.3 Thermal Simulation
 17.7.3.4 Mechanical Strengths
 17.7.3.5 Requirements Made on the Electrical Machine
17.7.4 Series Development

18 Sensors
18.1 Temperature Sensors
18.2 Knock Sensors
18.3 Exhaust Gas Sensors
 18.3.1 Lambda Sensors
 18.3.2 NO Sensors
18.4 Pressure Sensors
 18.4.1 Normal Pressure Sensors
 18.4.1.1 Piezoresistive Measurement Principle
 18.4.1.2 Capacitive Measurement Principle
 18.4.2 Medium Pressure Sensors
 18.4.3 High-Pressure Sensors
 18.4.3.1 Technical Boundary Conditions
 18.4.3.2 Signal Transmission
 18.4.3.3 Measuring Precision
18.5 Air Mass Sensors
 18.5.1 Comparison of Air Mass-Controlled and Intake Manifold Pressure-Controlled Systems
 18.5.2 Measuring Principles
 18.5.3 Hot-Film Anemometer
 18.5.4 Secondary Air Mass Sensors (SAF)
18.6 Speed Sensors
 18.6.1 Passive Speed Sensors
 18.6.2 Active Sensors

19 Actuators
19.1 Drives for Charge Controllers
 19.1.1 Pneumatic Drives
 19.1.2 Electric Drives
 19.1.2.1 Stepping Motor
 19.1.2.2 DC Motor
 19.1.2.3 Torque Motor
19.2 Throttle Valve Actuators
 19.2.1 Key Function in SI Engines
 19.2.2 Key Function in Diesel Engines and in Quality-Controlled SI Engines (Direct Injection)
 19.2.3 Additional Functions
 19.2.3.1 Idle-Speed Control of SI Engines
 19.2.3.2 Position Signal
 19.2.3.3 Dashpot Function
 19.2.3.4 Cruise Control Function
 19.2.4 “Drive by Wire”/E-Gas
 19.2.5 Charge Pressure Control
19.2.6 Vacuum/Prethrottle Actuators
19.3 Swirl and Tumble Plates
 19.3.1 Swirl Plate Actuators (Swirl/Tumble Actuators)
19.4 Exhaust Gas Recirculation Valves
19.5 Evaporative Emissions Components
 19.5.1 Canister-Purge Valves
 19.5.2 Evaporative Emissions Diagnostics
 19.5.2.1 Tank Diagnostics with Pressure
 19.5.2.2 Tank Diagnostics with Vacuum

20 Cooling of Internal Combustion Engines
 20.1 General
 20.2 Demands on the Cooling System
 20.3 Principles for Calculation and Simulation Tools
 20.4 Engine Cooling Subsystems
 20.4.1 Coolant Cooling
 20.4.1.1 Radiator Protection Media
 20.4.2 Intercooling
 20.4.3 Exhaust Gas Cooling
 20.4.4 Oil Cooling
 20.4.5 Fans and Fan Drives
 20.5 Cooling Modules
 20.6 Overall Engine Cooling System

21 Exhaust Emissions
 21.1 Legal Regulations
 21.1.1 Europe
 21.1.2 California, USA
 21.1.3 Japan
 21.1.4 Harmonizing Exhaust Emission Regulations
 21.2 Measuring Exhaust Emissions
 21.2.1 Measuring Techniques for Certifying Automobiles
 21.2.2 Measuring Technology for Engine Development
 21.3 Pollutants and Their Origin
 21.3.1 Spark-Injection Engines
 21.3.1.1 Restricted Exhaust Emission Components
 21.3.1.2 Unrestricted Exhaust Components
 21.3.2 Diesel Engines
 21.3.2.1 Restricted Exhaust Components
 21.3.2.2 Unrestricted Exhaust Emission Components
 21.4 Reducing Pollutants
 21.4.1 Engine-Related Measures
 21.4.1.1 Spark-Injection Engines
 21.4.1.2 Diesel Engines
 21.5 Exhaust Gas Treatment for Spark-Ignition Engines
 21.5.1 Catalytic Converter Design and Chemical Reactions
 21.5.2 Catalytic Converter Approaches for Stoichiometric Engines
 21.5.2.1 Three-Way Catalytic Converter
 21.5.2.2 Oxygen Storage Mechanism
 21.5.2.3 Cold Start Strategies
 21.5.2.4 Deactivation and Its Effect
 21.5.3 Catalytic Converter Approaches for Lean-Burn Engines
 21.5.3.1 Options for NOx Reduction in Lean Exhaust Gas
 21.5.3.2 The NOx Storage Catalytic Converter
 21.5.3.3 System with a Precatalytic Converter and NOx Adsorber
 21.5.4 Metal Catalytic Converter Substrates
 21.6 Exhaust Treatment in Diesel Engines
 21.6.1 Diesel Oxidation Catalytic Converters
 21.6.1.1 Pollutants in Diesel Exhaust
 21.6.1.2 Characteristics of Diesel Oxidation Catalytic Converters
 21.6.1.3 Deactivating the Catalyst Surface
 21.6.1.4 Evaluating Diesel Oxidation Catalytic Converters
 21.6.2 NOx Adsorbers for Diesel Passenger Cars
 21.6.2.1 Operating Range of Storage Catalytic Converters
 21.6.2.2 Desulfurization
 21.6.2.3 Regeneration Methods
 21.6.3 Particle Filters
 21.6.3.1 Particle Definitions and Particle Properties
 21.6.3.2 Goals of Particle Filtration
 21.6.3.3 Requirements for Filter Media and Technical Solutions
 21.6.3.4 Deposition and Adhesion
 21.6.3.5 Regeneration and Periodic Cleaning
 21.6.3.6 Regeneration Emissions and Secondary Emissions
 21.6.3.7 Pressure Loss
 21.6.3.8 Installation Area and System Integration
 21.6.3.9 Damage Mechanisms, Experience
 21.6.3.10 Quality Criteria
 21.6.3.11 Performance Test, Type Test, OBD, Field Control
 21.6.3.12 Catalytic Soot Filter
21.6.3.13 Particle Measuring

22 Operating Fluids

22.1 Fuels

22.1.1 Diesel Fuel
22.1.1.1 Diesel Fuel Components and Composition
22.1.1.2 Characteristics and Properties
22.1.1.3 Additives for Diesel Fuel
22.1.1.4 Alternative Diesel Fuels

22.1.2 Gasoline
22.1.2.1 Gasoline Components and Composition
22.1.2.2 Characteristics and Properties
22.1.2.3 Alternative Gasolines

22.2 Lubricants

22.2.1 Types of Lubricants
22.2.2 Task of Lubrication
22.2.3 Types of Lubrication
22.2.4 Lubrication Requirements
22.2.5 Viscosity/Viscosity Index (V.I.)
22.2.5.1 Influence of Temperature on Viscosity
22.2.5.2 Influence of the Pressure on the Viscosity
22.2.5.3 Influence of Shear Speed on Viscosity

22.2.6 Basic Liquids
22.2.6.1 Mineral Basic Oils
22.2.6.2 Synthetic Basic Liquid

22.2.7 Additives for Lubricants
22.2.7.1 V.I. Improvers
22.2.7.2 Detergents and Dispersants
22.2.7.3 Antioxidants and Corrosion Inhibitors
22.2.7.4 Friction and Wear Reducers (EP/AW Additives)
22.2.7.5 Foam Inhibitors

22.2.8 Engine Oils for Four-Stroke Engines
22.2.8.1 SAE Viscosity Classes for Engine Oils
22.2.8.2 Single-Grade Engine Oil
22.2.8.3 Multigrade Oils
22.2.8.4 Fuel Economy Oils
22.2.8.5 Break-In Oils
22.2.8.6 Gas Engine Oils
22.2.8.7 Methanol Engine Oils
22.2.8.8 Hydrogen Engine Oils
22.2.8.9 Performance Classes
22.2.8.10 Evaluating Used Oil
22.2.8.11 Racing Engine Oils
22.2.8.12 Wankel Engine Oils

22.2.9 Engine Oils for Two-Stroke Engines
22.2.9.1 Two-Stroke Performance Classes
22.2.9.2 Two-Stroke Test Methods

22.3 Coolant
22.3.1 Frost Protection
22.3.2 Corrosion Protection
22.3.3 Specifications

23 Filtration of Operating Fluids

23.1 Air Filter
23.1.1 The Importance of Air Filtration for Internal Combustion Engines
23.1.2 Impurities in Engine Intake Air
23.1.3 Data for Assessment of Air-Filter Media
23.1.4 Measuring Methods and Evaluation
23.1.5 Requirements Made on Modern Air-Filter Systems
23.1.6 Design Criteria for Engine-Air Filter Elements
23.1.7 Filter Housings
23.1.7.1 Design of Filter Housings

23.2 Fuel Filters
23.2.1 Gasoline Fuel Filters
23.2.2 Diesel-Fuel Filters
23.2.3 The Performance Data of Fuel Filters

23.3 Engine-Oil Filtration
23.3.1 Wear and Filtration
23.3.2 Full-Flow Oil Filters
23.3.3 Removal Efficiency and Filter Fineness
23.3.4 Bypass Oil Filtration

24 Calculation and Simulation

24.1 Strength and Vibration Calculation
24.1.1 Procedures and Methods
24.1.2 Selected Examples of Applications
24.1.3 Piston Calculations

24.2 Flow Calculation
24.2.1 One- and Quasidimensional Methods
24.2.2 Three-Dimensional Flow Calculation
24.2.3 Selected Examples of Application

25 Combustion Diagnostics

25.1 Discussion
25.2 Indicating
25.2.1 Measuring Systems
25.2.2 Quality Criteria
25.2.3 Indicating: Prospects

25.3 Visualization
25.3.1 Functions and Discussion
25.3.2 Visualization Methods for Real Engine Operation
25.3.2.1 The Radiant Properties of Gas, Gasoline, and Diesel Flames
Internal Combustion Engine Handbook
Basics, Components, Systems, and Perspectives

25.3.2.2 Flame Spectroscopy
25.3.2.3 Flame Propagation in Premixed Charges with Supplied Ignition
25.3.2.4 Flame Propagation in Diffusion Combustion in a Diesel Engine
25.3.3 Visualization of Combustion in Real Engine Operation by the Flame’s Intrinsic Luminescence
25.3.3.1 Technical Exploitation: Flame Propagation
25.3.4 Visualization of Illuminated Processes
25.3.4.1 Visualization of Mixture Distribution
25.3.4.2 Visualization of Velocity Fields
25.3.5 Visualization: The Future

26 Fuel Consumption
26.1 General Influencing Factors
26.1.1 Air Resistance
26.1.2 Weight
26.1.3 Wheel Resistance
26.1.4 Fuel Consumption
26.2 Engine Modifications
26.2.1 Downsizing
26.2.2 Diesel Engine
26.2.3 Gasoline Engine
26.2.3.1 The Lean-Burn Engine Concept and Direct Injection
26.2.3.2 Variable Valve Timing
26.2.3.3 Ignition
26.2.4 Cylinder Shutoff
26.2.4.1 Concept for Reduction of Fuel Consumption
26.2.4.2 Consumption Benefits in the Part-Load Range
26.3 Transmission Ratios
26.3.1 Selection of Direct Transmission
26.3.2 Selection of Overall Transmission Ratio in the Highest Gear
26.4 Driver Behavior
26.5 CO₂ Emissions
26.5.1 CO₂ Emissions and Fuel Consumption
26.5.2 The Influence of Engine Use on CO₂ Emissions
26.5.3 The Trend in Global CO₂ Emissions

27 Noise Emissions
27.1 Basic Physical Principles and Terms
27.2 Legal Provisions Concerning Emitted Noise

27.2.1 Methods of Measuring Emitted Noise
27.2.2 Critical Evaluation of the Informational Value of the Emitted Noise Measuring Method
27.2.3 Emitted Noise Limits, International Legislation; Future Trends
27.3 Sources of Emitted Noise
27.4 Emitted Noise-Reduction Provisions
27.4.1 Provisions on the Engine
27.4.2 Provisions on the Vehicle
27.5 Engine Noise in the Vehicle Interior
27.6 Acoustic Guidelines for the Engine Designer
27.7 Measuring and Analytical Methods
27.8 Psychoacoustics
27.9 Sound Engineering
27.10 Simulation Tools
27.11 Antinoise Systems: Noise Reduction using Antinoise

28 Alternative Propulsion Systems
28.1 The Rationales for Alternatives
28.2 The Wankel Engine
28.3 Electric Propulsion
28.4 Hybrid Propulsion System
28.4.1 Storage Systems
28.5 The Stirling Engine
28.6 Gas Turbines
28.7 The Steam Motor
28.8 The Fuel Cell as a Vehicle Propulsion System
28.8.1 The Structure of the PEM Fuel Cell
28.8.2 Hydrogen as the Fuel
28.8.3 Methanol as the Fuel
28.8.4 Gasoline Engine Fuel
28.8.5 The Fuel Cell in the Vehicle
28.8.6 Evaluation of the Fuel Cell vis-à-vis Other Propulsion Systems
28.9 Summary

29 Outlook

Index

About the Editors

Color Section