Vehicle Refinement
Controlling Noise and Vibration in Road Vehicles

List of Chapters

Acknowledgements
Preface
About the author

1 Vehicle refinement: purpose and targets
 1.1 Introduction and definitions
 1.2 Scope of this book
 1.3 The purpose of vehicle refinement
 1.4 How refinement can be achieved in the automotive industry
 1.5 The history of vehicle refinement: one representative 20-year example
 1.6 Refinement targets
 References

2 The measurement and behaviour of sound
 2.1 How sound is created and how it propagates
 2.2 Making basic noise measurements: the sound level meter, recording sound
 2.3 Making basic noise measurements: the decibel scale, frequency and time weightings
 2.4 Analysis and presentation of noise data
 2.5 Sound power level, sound intensity level, sound pressure level
 References
 Appendix 2A: Introduction to logarithms

3 Exterior noise: assessment and control
 3.1 Pass-by noise homologation
 3.2 Noise source ranking
 3.3 Air intake systems and exhaust systems: performance and noise effects
 3.4 Tyre noise
 References
 Appendix 3A: Valve and port geometry

4 Interior noise: assessment and control
 4.1 Subjective and objective methods of assessment
 4.2 Noise path analysis
 4.3 Measuring the sound power of IC engines and other vehicle noise sources
 4.4 Engine noise
 4.5 Road noise
 4.6 A note on aerodynamic (wind) noise
 4.7 A note on brake noise
 4.8 A note on squeak, rattle and tizz noises
 4.9 Control of sound through absorption within porous materials
 4.10 Control of sound by minimising transmission through panels
 References
 Appendix 4A: Some background information on systems
 Appendix 4B: The convolution integral
 Appendix 4C: The covariance function, correlation and coherence
 Appendix 4D: The frequency response function
 Appendix 4E: Plane waves in a tube with a termination impedance
 Appendix 4F: The derivation of the linearised mass conservation equation
 Appendix 4G: The derivation of the non-linear (and linearised) inviscid Euler equation

5 The measurement and behaviour of vibration
 5.1 Making basic vibration measurements
 5.2 Laser-based vibration measurements
 5.3 Analysis and presentation of vibration data: quantifying vibration
 5.4 Modes of vibration and resonance
 5.5 Modal analysis
 References

6 Sources of vibration and their control
 6.1 Introduction
 6.2 Damping of vibrations
 6.3 Vibration isolation and absorption
 6.4 Engine and drivetrain vibrations
 6.5 Vehicle and chassis vibrations: ride quality
 References
 Index