List of Chapters:

Preface
Acknowledgments

Chapter 1 Introduction
What Is This Book All About?
What Is Data Acquisition?
Hardware

Chapter 2 Data Analysis Software Requirements
General Requirements for Data Acquisition Software
Different Ways of Displaying Data
Keeping Notes with Data Files
Mathematical Channels
Data Overlays
Filtering
Exporting Data to Other Software Packages
Getting Organized

Chapter 3 The Basics
Check the Car's Vital Signs
Lap Markers and Segment Times
Comparing Laps
Inertial Track Mapping
GPS and Track Mapping
The Beginner's Data Logging Kit

Chapter 4 Straight-Line Acceleration
Torque and Horsepower
Traction and Longitudinal Slip
ABS/TCS and Slip Ratios
Time Versus Distance
The Importance of Corner Exiting Speed
Drag Racing Specifics

Chapter 5 Braking
Maximizing Braking Speed
Braking Effort
Braking Points
Lockup
Brake Balance
Pedal Travel

Chapter 6 Gearing
Upshifting
Downshifting
The Gear Chart
Total Gear Ratio Channel
Determining Correct Gear Ratios

Chapter 7 Cornering
The Cornering Sequence
Traction Circle
Effects of Speed
Throttle Histogram
Steering
Attitude Velocity
Front and Rear Lateral Acceleration

Chapter 8 Quantifying Roll Stiffness Distribution
Front and Rear Roll Gradient
Using Roll Gradients as a Setup Tool
Front and Rear Roll Angle Ratio
Using the Roll Ratio as a Setup Tool
Suspension Troubleshooting
Pitch Gradient

Chapter 9 Wheel Loads and Weight Transfer
Lateral Weight Transfer
Longitudinal Weight Transfer
Banking and Grade Effects
Total Wheel Loads
Determining Wheel Loads with Modal Analysis
Measuring Wheel Loads with Suspension Load Cells
Tire Spring Rates
Chassis Torsion

Chapter 10 Frequencies and Shock Absorbers
Damping Analysis
Shock Speed Histogram
Introducing Frequency Analysis
Frequency Analysis Versus Time-Space Analysis
Theoretical Analysis
Suspension Optimization Using Frequency Analysis
Modal Analysis
Modal Frequency Issues
Nonlinear Considerations
Frequency Analysis from Sensor Data

Chapter 11 Aerodynamics
Aerodynamic Measurements
Air Density
Dynamic Pressure
The Coastdown Test
Measuring the Aerodynamic Downforce
Airbox Efficiency

Chapter 12 Analyzing the Driver
Improving Driver Performance
Driving Style Evaluation
Throttle Application
Braking
Shifting Gears
Cornering
Driving Line
Driving Line Analysis Using GPS
Driving Line Analysis Using Video Feed
Driver Consistency over Multiple Laps

Chapter 13 Simulation Tools
Introduction
Suspension Kinematics Simulation
Lap Time Simulation
A Simulated Example

Chapter 14 Using the Data Acquisition System for Developing a Race Strategy
Fuel Consumption
Tire Wear and Driver Consistency

Chapter 15 Introduction to Measurement
Analog-Digital Conversion: Accuracy Implications
Sensor Selection and Application
Measurement Uncertainty
Temperature Sensors
Pressure Sensors
Displacement Sensors
Acceleration Sensors
Speed Sensors
Strain Gages
Pitot Tube
Oxygen Sensors
GPS
Laser Distance Sensors

List of Symbols

References

Bibliography

Index

About the Author