Brake Technology Handbook

List of Chapters:

Symbols, Indices, and Acronyms

<table>
<thead>
<tr>
<th>1 The History of Automobile Brakes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Mechanically Operated Vehicle Brakes</td>
</tr>
<tr>
<td>1.2 The Hydraulically Operated Four-Wheel Brake</td>
</tr>
<tr>
<td>1.3 Brakes with Internal Amplification</td>
</tr>
<tr>
<td>1.4 Multi-Circuit Braking Systems</td>
</tr>
<tr>
<td>1.5 From Muscle Power to Full Power Brakes</td>
</tr>
<tr>
<td>1.6 The Hydraulically Operated Disc Brake</td>
</tr>
<tr>
<td>1.7 Electronic Brake Control Systems</td>
</tr>
</tbody>
</table>

2 Basic Elements of the Braking Process

| 2.1 Braking as Driving Task |
| 2.2 Characteristics of the Braking Process |
| 2.3 Stopping Distance |
| 2.4 Braking Stability and Braking Force Distribution |
| 2.5 Reliability |

3 Automotive Engineering Requirements

| 3.1 Performance |
| 3.1.1 Braking Distance |
| 3.1.2 Stability |
| 3.1.3 Road Irregularities |
| 3.1.4 Dependence on Friction Value |
| 3.2 Vehicle Performance |
| 3.2.1 Stability |
| 3.2.2 Body Pitch |
| 3.3 Actuation/Control |
| 3.3.1 Responsiveness and Controllability |
| 3.3.2 Forces, Travels, Characteristics |
| 3.4 Package/Installation Situation |
| 3.4.1 Installation Sizes and Relations |
| 3.4.2 Masses |
| 3.5 Brake Boost Energy Supply |
| 3.6 Thermal Marginal Conditions |
| 3.7 Environmental Conditions |
| 3.8 Noises and Vibrations |
| 3.8.1 Vibrations |
| 3.8.2 Noises |
| 3.9 Crash Requirements |
| 3.10 Environmental Protection |

| 3.10.1 Brake Linings |
| 3.10.2 Corrosion Protection |
| 3.10.3 Brake Fluid |
| 3.11 Energy Recuperation |

4 User-Related Requirements

| 4.1 Introduction |
| 4.2 Braking Situation |
| 4.2.1 Information Reception |
| 4.2.2 Cognition (Information Processing in the Narrower Sense) |
| 4.2.3 Reaction |
| 4.2.4 Time Sequence of Information Processing in Braking Situations |
| 4.3 Braking Action |
| 4.3.1 Foot Movement |
| 4.3.2 Actuation of Brake Pedal |
| 4.4 Ergonomic Brake Design |
| 4.4.1 Geometry |
| 4.4.2 Key Features of Brake Pedal |
| 4.4.3 Alternative Concepts |
| 4.4.4 Braking Assistants |

5 Interaction Among the Road Surface, Tire, and Brake

| 5.1 Introduction |
| 5.2 Transmission of Forces Between the Tire and the Road Surface |
| 5.2.1 The Friction of Rubber |
| 5.2.2 Interaction Between the Tire and the Road Surface |
| 5.2.3 Buildup of Tire Forces |
| 5.2.3.1 Braking Forces/Tangential Forces |
| 5.2.3.2 Side Slip: Forces and Moments |
| 5.3 Interaction Between Tire and Brake |
| 5.3.1 Tire Models |
| 5.3.2 Dynamic Tangential Force/Slip Characteristics of a Tire During Braking |
| 5.3.3 Tangential Forces During Braking with ABS |
5.3.4 Combined Tangential and Lateral Forces, Braking When Lateral Force Is Required
5.4 Integration of the Tire into the Overall Vehicle System
5.4.1 Product Optimization of the Tire and the ABS Controller Using the Example of Winter Tires
5.4.2 The Role of Skid Marks in Accident Reconstruction
5.5 Outlook

6 Design and Simulation of Automobile Brake Systems
6.1 Principles of the Brake Dynamics
6.1.1 Lines of Equal Deceleration
6.1.2 Lines of Constant Coefficient of Friction Between the Tire and the Road Surface
6.2 Principles of the Brake Calculation
6.2.1 Pedal Unit
6.2.2 Vacuum Booster with Master Cylinder
6.2.3 Brake
 6.2.3.1 Disc Brake
 6.2.3.2 Drum Brake
6.3 Brake System Design
6.3.1 Brake-Split Configuration
 6.3.1.1 Front Axle/Rear Axle Configuration (II-Configuration)
 6.3.1.2 Diagonal Configuration (X-Configuration)
 6.3.1.3 Other Brake-Circuit Configurations (HI-, LL-, HH-Configuration)
6.3.2 Sizing Criteria for Brake Systems
 6.3.2.1 Requirements of the Brake Dynamics
 6.3.2.2 Requirements of the Actuation Unit and the Transmission Mechanism
 6.3.2.3 Thermal Sizing Criteria
6.3.3 Design of Wheel Brakes
 6.3.3.1 Brake Power
 6.3.3.2 Thermal Design
 6.3.3.3 Component Life/Wear
 6.3.3.4 Comfort
 6.3.3.5 Costs
 6.3.3.6 Weight
6.3.4 Design of Brake Control Systems
 6.3.4.1 Design Criteria for ABS Systems
 6.3.4.2 Design Criteria for the Traction Control System
 6.3.4.3 Design Criteria for the Electronic Stability Control
 6.3.4.4 Design Criteria for Electrohydraulic Brake Systems
6.4 Simulation of Brake Systems
6.4.1 Brake System Design
6.4.2 Analysis of the Brake System Components Using the Finite Elements Method
6.4.3 Simulation of Brake-System Components
6.4.4 Overall System Simulation

7 Construction and Components of Passenger Car Braking Systems
7.1 Introduction
7.1.1 The Underlying Physics
7.1.2 Braking System Types
7.1.3 Construction of Braking Systems in Passenger Cars
 7.1.3.1 Front-Rear Split
 7.1.3.2 Diagonal Split (“X Split”)
 7.1.3.3 Other Hydraulic Brake Circuit Splits
7.2 Generation of the Braking Force
 7.2.1 Disc Brakes
 7.2.1.1 Fixed Calipers
 7.2.1.2 Frame Calipers
 7.2.1.3 Fist Caliper
 7.2.1.4 FN Fist Caliper
 7.2.1.5 FNR Fist Frame Caliper
 7.2.1.6 Combined Fist Caliper
 7.2.1.7 Brake Discs
 7.2.1.8 Brake Linings
 7.2.2 Drum Brakes
 7.2.2.1 Simplex Drum Brake
 7.2.2.2 Duplex Drum Brake
 7.2.2.3 Duo-Servo Drum Brake
 7.2.3 Electric Generator
 7.2.3.1 Crankshaft Starter Alternator
7.3 Transfer and Modulation of Braking Energy
 7.3.1 Mechanical-Hydraulic Modulation of Brake Pressure
 7.3.2 Electrohydraulic Brake Pressure Modulation
 7.3.2.1 Hydraulic-Electronic Control Unit (HCU)
 7.3.2.2 Electronic Control Unit (ECU)
 7.3.2.3 Electronic Control Functions
7.3.2.4 Sensors for Electronic Brake Control Systems
7.3.3 Transmission Elements
 7.3.3.1 Brake Fluid
 7.3.3.2 Brake Tubes and Hoses
7.4 Brake Actuation
 7.4.1 Brake Booster
 7.4.1.1 Vacuum Brake Boosters
 7.4.1.2 Hydraulic Brake Boosters
 7.4.2 Tandem Master Cylinder
 7.4.2.1 Compensating Bore TMc
 7.4.2.2 Central Valve TMc
 7.4.2.3 Plunger TMc
 7.4.2.4 Reservoir
7.5 Human-Machine Interface (HMI)
 7.5.1 Service Brake HMI
 7.5.2 Parking Brake HMI
 7.5.3 Pedal Characteristics (Ergonomics)
 7.5.3.1 Adjustable Pedals
 7.5.3.2 Crash Compatibility
7.6 New and Future System Architectures
 7.6.1 Electric Hydraulic Combi Brake EHC

8 Braking Systems and Braking Performance of Commercial Vehicles and Buses
8.1 Evaluation of a Braking System
 8.1.1 Vehicle Stability When Braking
 8.1.2 Distribution of the Braking Forces to the Axles
 8.1.3 Brake Application in the Braking Force Distribution Diagram
 8.1.4 Load-Sensitive Braking Force Distribution (ALB)
 8.1.4.1 Braking Force Limiters
 8.1.4.2 Braking Force Reducers
 8.1.5 Influence of Engine Drag Torques, Inertia Masses and Braking Torques of Continuous Braking Systems
 8.1.6 Determination of Brake Factor Fluctuations and Their Influence on the Braking Force Distribution
 8.1.7 Brake Circuits and Brake Circuit Failure
8.2 Braking Systems for Medium and Heavy Commercial Vehicles
 8.2.1 Structure of a Braking System
 8.2.2 Wheel Brakes and Components
8.3 Continuous Braking Systems
 8.3.1 Engine Braking Systems
 8.3.2 Retarders

8.4 Conventional Braking- and Driving-Slip Control Systems
 8.4.1 Antilock Braking Systems (ABS)
 8.4.2 Traction Control
8.5 Electronic Braking Management (EBS)
 8.5.1 Integration of Continuous Braking Systems
 8.5.2 Vehicle Stability Control with Integrated Roll-Over Protection
 8.5.3 Optimization of the Compatibility Between Tractor Vehicle and Semitrailer/Full Trailer
 8.5.4 Braking Assistant
 8.5.5 Hill Holder
 8.5.6 Lining/Pad Wear Control
 8.5.7 Distance Monitoring
 8.5.8 Systems for Automatic Vehicle Guidance
8.6 System Integration and Electronic Networking
8.7 Concluding View on X-by-Wire Systems

9 Brakes for Commercial Vehicles
9.1 Types of Pneumatically Operated CV Brakes
 9.1.1 Drum Brakes
 9.1.2 Disc Brakes
9.2 Design and Operation of the Pneumatically Operated Floating Caliper Disc Brake
 9.2.1 Actuating System
 9.2.1.1 Service Brake
 9.2.1.2 Parking Brake and Secondary Braking System
 9.2.2 Automatic Wear-Adjusting System
 9.2.3 Adjustment Behavior
 9.2.4 Significance of the Clearance
 9.2.5 Interaction Brake/Wheel Hub
 9.2.5.1 Forces Resulting at the Brake
 9.2.5.2 Thermal Load of the Wheel Bearing
9.3 Performance and Service Life Behavior
 9.3.1 Design Data
 9.3.1.1 Durability
 9.3.1.2 Long-Term Braking Performance
9.4 Friction Elements
 9.4.1 Brake Pads
 9.4.2 Brake Disc
 9.4.2.1 Brake Disc Designs
 9.4.2.2 Brake Disc Material
9.4.2.3 Causes for Heat Cracks
9.4.2.4 Causes for Brake Vibrations
9.4.2.5 Dimensioning of the Friction Partners
9.4.2.6 The Specific Braking Performance

9.5 Development and Testing of Brake and Friction Partners

9.6 Trailer Brakes
9.6.1 Trailer-Specific Characteristics
 9.6.1.1 Wheel Brakes
 9.6.1.2 Adjustment
9.6.2 Trailer-Specific Requirements
 9.6.2.1 Trailer Homologation
 9.6.2.2 Trailer Brake Certificates
9.6.3 Trailer-Specific Brake Systems
 9.6.3.1 Brake Calculations for Vehicle Homologation
 9.6.3.2 Parking Brake Effect

9.7 Compatibility in Tractor/Trailer Units
 9.7.1 Legislation
 9.7.2 Matching of Tractor/Trailer Combinations
 9.7.3 Causes and Consequences of Inadequate Matching

10 Braking Behavior of Single-Track Vehicles

10.1 Motorcycles
 10.1.1 Riding Dynamics of Single-Track Vehicles
 10.1.1.1 Stationary Straight-Ahead Motion and Stability
 10.1.1.2 Stationary Motion in Bends
 10.1.1.3 Balance of Forces and Roll Angle
 10.1.2 Braking Behavior of Single-Track Vehicles
 10.1.2.1 Fundamental Aspects of Riding Dynamics in the Braking Process
 10.1.2.2 Brake Behavior on Slopes
 10.1.2.3 Influence of Tire-Road Friction
 10.1.2.4 Ideal and Real Distribution of Brake Forces
 10.1.2.5 Influence of Suspension Geometry
 10.1.2.6 Braking Dive Compensation
 10.1.2.7 Application of the Brakes in a Bend
 10.1.3 Typical Riding Errors While Braking
 10.1.3.1 Over-Braking
 10.1.3.2 Errors When Braking in an Emergency

10.2 Bicycles

10.1.4 Brake Systems of Single-Track Vehicles
 10.1.4.1 The Brake Caliper
 10.1.4.2 Brake Discs
 10.1.4.3 Brake Pads
 10.1.5 Configuration of the Brake System
 10.1.5.1 Transformation of Lever Force Into Deceleration
 10.1.5.2 Thermal Stability
 10.1.5.3 Brake Noise
 10.1.5.4 Long-Term Behavior of Brake Components
 10.1.6 Integral Brake Systems and Brake Control Systems
 10.1.6.1 Antilock Systems (ABS)
 10.1.6.2 ABS Components
 10.1.6.3 The ABS Braking Process
 10.1.6.4 Operating Principles
 10.1.7 Integral Brake Systems
 10.1.7.1 Combined Brake System by Honda
 10.1.7.2 Integral Brake System by BMW
 10.1.8 Brake-by-Wire

11 Overrun Braking Systems

11.1 Introduction
11.2 Construction and Function of the Braking System
 11.2.1 Components
 11.2.1.1 Overrun Coupling
 11.2.1.2 Transmission System
 11.2.1.3 Wheel Brakes
 11.2.2 Functions
 11.2.2.1 Service Brake, Forward Travel
 11.2.2.2 Automatic Reversing System, Reverse Travel
 11.2.2.3 Parking Brake
11.2.2.4 Breakaway Braking Function
11.3 Braking System Layout
 11.3.1 Brake Compatibility Calculation as per Directive 71/320/EEC
 11.3.2 Brake Force Utilization
 11.3.3 ABS Compatibility
11.4 Maintenance and Care
 11.4.1 Maintenance
 11.4.2 Readjustment
11.5 New Developments
12 Brakes of Off-Road Vehicles
 12.1 Historical Development of Brakes in Off-Road Vehicles
 12.2 Survey of National and International Legal Specifications for Brake Systems
 12.2.1 Transport Laws in the Federal Republic of Germany
 12.2.2 Guidelines of the European Community (EC)
 12.2.3 Regulations of the Economic Commission for Europe
 12.2.4 Standards of the Society of Automotive Engineers
 12.3 Technical Versions and Design
 12.3.1 Drum Brake
 12.3.2 Disc Brake
 12.3.3 Multiple-Disc Brake (Wet Brake)
 12.3.3.1 Design of a Multiple-Disc Brake
 12.3.3.2 Calculation of the Brake Torque
 12.3.3.3 Friction Characteristics
 12.3.3.4 Power Loss and Efficiency
 12.4 Brake Testing and Braking Effect
 12.4.1 Laboratory Testing
 12.4.1.1 Proof of Compliance with Legal Specifications
 12.4.1.2 Durability and Wear Testing
 12.4.2 Vehicle Testing
 12.4.2.1 Cold Performance Test (Type 0)
 12.4.2.2 Heat Fading Test
 12.4.2.3 Comparison of the Standards
 12.5 Prospects and Tendencies
 12.5.1 Interaction Between Wheel Brake and Other Brake Systems in the Vehicle (Brake Management)
 12.5.2 Environmental Protection
 Thanks to New Brake Concepts
13 Brakes for Tracked Vehicles
 13.1 Introduction
 13.2 Special Requirements for Brakes of Tracked Vehicles
 13.3 Mechanical Brakes for Tracked Vehicles
 13.3.1 Mechanical Friction Brakes
 13.3.2 Multiple Wet Plate Brakes
 13.3.3 Dry-Type Single and Multiple-Disc Brakes
 13.4 Control of Mechanical Brakes
 13.5 Approval of Tracked Vehicle Brakes
 13.6 Summary and Outlook
14 Aircraft Brakes
 14.1 General Description of an Aircraft Braking System
 14.1.1 Hydromechanical Brake Control
 14.1.2 Electronic Brake Control (Brake-by-Wire)
 14.1.3 Subsystems
 14.1.3.1 Anti-Skid System
 14.1.3.2 Auto-Braking System
 14.1.3.3 Parking Brake System
 14.1.3.4 Emergency Braking System
 14.1.3.5 Brake Cooling System
 14.1.3.6 Indicating and Monitoring System
 14.2 Design Criteria for Military and Civil Aircraft
 14.2.1 Qualification Directions
 14.2.1.1 Civil Aviation Requirements
 14.2.1.2 Military Aviation Requirements
 14.2.2 Simulation Procedures
 14.3 Layout of a Modern BBWS System and its Components
 14.3.1 Brake Pedal Assembly
 14.3.2 Brake Control Unit (BCU)
 14.3.3 Valves
 14.3.3.1 Brake Control Valves
 14.3.3.2 Shutoff Valves
 14.3.3.3 Hydraulic Fuses
 14.3.4 System Sensors
 14.3.4.1 Thermocouples (Optional)
 14.3.4.2 Brake Torque Transducer
 14.3.4.3 Wheel Speed Sensor
 14.3.5 Wheel Brakes
14.4 Friction Materials
14.5 Cooling and Temperature Monitoring
 14.5.1 Thermal Loads
 14.5.2 Cooling Features
 14.5.3 Temperature Monitoring
14.6 Future Aspects

15 Race Car Brake Systems
15.1 Introduction
15.2 Race Car Performances
15.3 Racing Car Straight-Line Braking
15.4 Brake System
 15.4.1 Brake Caliper
 15.4.2 Master Cylinder
15.5 Brake System Cooling
15.6 Friction Materials
 15.6.1 Carbon Manufacturing Process

16 Brake Systems of Rail Vehicles
16.1 Introduction
16.2 Requirements on Rail Vehicle Brakes
 16.2.1 High-Speed Trains
 16.2.2 Locomotives
 16.2.3 Passenger Carriages
 16.2.4 Goods Wagons
 16.2.5 Multiple Units
 16.2.6 Metros
16.3 Brake Operation and Safety Requirements
 16.3.1 Basic Safety Requirements
 16.3.2 Requirements for Signaling
 16.3.3 Requirements for Maintenance and Service Life
 16.3.4 Requirements for AAR Railways
16.4 Authorization and Regulations
 16.4.1 UIC Leaflets
 16.4.2 EU Directives and TSI
 16.4.3 European Standards
 16.4.4 Approval Authorities
 16.4.5 Operator-Specific Standards and Guidelines
16.5 Engineering of Rail Vehicle Brakes
 16.5.1 Adhesion of Wheel/Rail-Contact
 16.5.2 Performance
 16.5.3 BrakeWeight
16.6 Brake Systems
 16.6.1 Types of Brake Application
 16.6.2 Indirect Pneumatic Brake
 16.6.2.1 Brake Positions
 16.6.2.2 Load-Controlled Braking
 16.6.2.3 Direct Pneumatic Brake
 16.6.3 Direct Electropneumatic Brake
 16.6.4 Brake Management
 16.6.4.1 Retarder
 16.6.4.2 ED Brake
 16.6.4.3 Interaction of Brake Systems
16.7 Components and Subsystems
 16.7.1 Air Supply
 16.7.2 Air Stopcocks and Brake Pipe Couplings
 16.7.3 Distributor Valves
 16.7.4 Driver’s Brake Valve
 16.7.5 Brake Module
 16.7.6 Mechatronic Module
 16.7.7 Wheel Slip Prevention
 16.7.8 Tread Brakes
 16.7.9 Disc Brakes
 16.7.10 Parking Brake
 16.7.11 Magnetic Track Brake
 16.7.12 Eddy Current Brake
16.8 Hydraulic Brake Systems in Trams
 16.8.1 Rules and Regulations for Tram Brakes
 16.8.2 Vehicle Structure
 16.8.3 Brake Systems
 16.8.3.1 Magnetic Track Brake
 16.8.3.2 Electrodynamic Brake
 16.8.3.3 Electrohydraulic Brake
 16.8.4 Brake Matrix
 16.8.5 Schematic Tram Brake System
 16.8.6 Main Components of a Hydraulic Brake System
 16.8.6.1 Brake Force Actuator, Brake Disc, Brake Pad
 16.8.6.2 Electrohydraulic Supply and Control Units
 16.8.6.3 Brake Control Electronics

17 Mechatronic Systems: A Short Introduction
17.1 From Mechanical to Mechatronic Systems
17.2 Mechanical Systems and Mechatronic Developments
17.3 Functions of Mechatronic Systems
 17.3.1 Basic Mechanical Design
 17.3.2 Distribution of Mechanical and Electronic Functions
 17.3.3 Operating Properties
 17.3.4 New Functions
 17.3.5 Other Developments
17.4 Integration Forms of Processes and Electronics
17.5 Design Procedures for Mechatronic Systems
17.6 Computer-Aided Design of Mechatronic Systems

18 Basics of Electrically Actuated Braking Systems for Passenger Cars
18.1 Introduction
18.2 Definition of Brake-by-Wire
18.3 Structure of Electrically Actuated Braking Systems
18.4 Design of the Actuation Device
18.4.1 Control Element
18.4.2 Basic Attributes
18.4.3 Information Feedback
18.5 Electrohydraulic Braking Systems
18.5.1 EHB Systems with Pressure Modulator and Pressure Accumulator
18.5.2 EHB Systems with Electrohydraulic Converter
18.6 Electromechanical Braking System
18.6.1 Electrically Actuated Vehicle Brake
18.6.1.1 Components
18.6.1.2 Modes of Operation: Interaction of the Components
18.6.2 Energy Demand
18.6.3 Operation of Electrically Actuated Wheel Brakes
18.6.4 Braking System Design
18.6.5 Fail safe Concept
18.7 Mechatronic Interventions in the Self-Reinforcement of the Brake
18.7.1 Active Guidance of the Brake Pad
18.7.2 Active Intervention in the Brake Factor Mechanism
18.8 Comparisons of the Concepts
18.9 Hybrid Electric Brake Systems
18.10 Perspectives

19 Electrohydraulically Actuated Brakes
19.1 Conflicts of Goals and Limitations of Conventional Brake Systems
19.2 Comparison of Operating Principles of Various Brake Systems
19.3 Characteristics of Electrohydraulically Actuated Brake Systems
19.4 System and Component Description
19.4.1 Actuator Unit
19.4.2 Hydraulic Unit
19.4.3 Control Units and Sensors
19.5 Functional System Characteristics
19.5.1 Pedal Feel

20 The Electromechanically Actuated Brake
20.1 Objective
20.2 System Structure: Interaction of the Components
20.2.1 Actuation Unit
20.2.2 The Electromechanical Wheel Brake
20.2.2.1 Converter
20.2.2.2 Gearing Systems
20.2.2.3 Sensors
20.2.3 Control Concepts
20.2.4 Power Supply
20.2.5 Passive Safety Aspects
20.3 Electric Parking Brake (EPB) and Active Parking Brake (APB)
20.4 Electric Hydraulic Combi (EHC) Brake
20.5 Utilization of Self-Energizing Brakes
20.6 Electrically Actuated Wheel Brake
20.6.1 Summary
20.6.2 History
20.6.3 Principles
20.6.4 Embodiments
20.6.5 Control Theory
20.6.6 Selected Measurement Results
20.6.6.1 General Test Profile
20.6.6.2 Response Dynamics
20.6.6.3 Sinusoidal Excitation
20.6.7 Outlook

21 The Brake System in Driver Assistance Systems
21.1 Overview, Function, and Requirements of Driver Assistance Systems for Cars
21.1.1 Antilock Brake System (ABS)
21.1.2 Traction Control System (TCS)
21.1.3 Electronic Stability Control (ESC)
21.1.3.1 Vehicle Dynamics Controller
21.1.3.2 Brake Slip Controller
21.1.3.3 Drive Slip Controller
21.1.4 Electronic Brake Force Distribution (EBV)
21.1.5 Electronically Controlled Deceleration (ECD)
21.1.6 Hill Descent Control (HDC)
21.1.7 Brake Assistant (BA)
21.1.8 Active Trailer Stabilization
21.2 Function of the Brake System in Driver Assistance Systems
21.3 Requirements of the Brake System for Driver Assistance Systems
21.4 Brake System Designs for Driver Assistance Systems
21.5 Monitoring the Brake System for Driver Assistance Systems
21.6 Outlook and Perspective

22 The Brake in the Mechatronic Chassis
22.1 Introduction
22.2 Chassis Mechanics
 22.2.1 Function Structure and Suspension Interfaces
 22.2.2 Interaction Between Brakes and Suspension
 22.2.3 Representation of Chassis Parameters
22.3 Limitations of Passive Chassis Systems
 22.3.1 Constraints of Conventional Hydraulically Actuated Wheel Brakes
 22.3.2 Dynamics
 22.3.3 Braking Comfort
 22.3.4 Conflict of Objectives Between Handling and Ride
22.4 Solution Potential Using Mechatronics
 22.4.1 Opportunities Through Mechatronics
 22.4.2 Mechatronics in the Brake System
 22.4.3 Mechatronics in the Suspension
 22.4.4 Interaction Between Steering System and Brake
 22.4.5 Interaction Between Tires and Brakes
22.5 Outlook

23 Friction Linings
23.1 Introduction
23.2 Friction Lining Requirements
23.3 Material Concepts
 23.3.1 Semimetallic Friction Linings
 23.3.2 Low Steel Friction Materials
 23.3.3 Non-Asbestos Organic Friction Linings
 23.3.4 Nonmetallic Linings
 23.3.5 Hybrid Linings
 23.3.6 Friction Linings for Ceramic Discs
 23.3.7 Underlayer
23.4 Ecology
23.5 Raw Materials and Their Characteristics in Friction Linings
23.6 Test Methods for Raw Materials
 23.6.1 Analytical Equipment Test Methods
23.7 Manufacturing Procedures
23.8 Outlook

24 Function Mechanism and Properties of Friction Couplings in Brake Processes
24.1 Introduction
24.2 Test Devices, Characteristic Load Values, and Assessment Criteria
 24.2.1 Test Methods, Testing Opportunities, and Measurement Systems
 24.2.2 Characteristic Parameters of Load
 24.2.3 Criteria for Assessment of Friction and Wear Properties
 24.2.4 Friction Surface Temperature
24.3 Running-In Process
24.4 The Function Mechanism in the Contact Surface
24.5 Local Friction Lining Wear
24.6 Local Friction Coefficients
24.7 Explanation of the Function Mechanism in the Contact Surface
24.8 Parameters that Influence Friction and Wear Properties

25 Mechanical Brakes in Stationary Industrial Plants
25.1 Introduction
25.2 Industrial Brakes
 25.2.1 Preferred Types of Mechanical Brakes
 25.2.2 The Interaction of Energy Between Drive Gear and Brake
 25.2.3 Friction and Wear Properties of the Friction Couples
 25.2.4 Dimensioning of Friction Couples for Industrial Brakes
25.3 Friction Disc Brakes

26 Vibration and Noise
26.1 Definition
26.2 Forms of Vibration and Noise
 26.2.1 Low-Frequency Vibrations and Noise
 26.2.2 High-Frequency Noises
26.3 Sources of Excitation
 26.3.1 Causes of Low-Frequency Noises and Vibrations
 26.3.2 Causes of High-Frequency Noise
26.4 Effects
 26.4.1 Vibrations
 26.4.2 Acoustic Effects
26.5 Test and Evaluation Methods
 26.5.1 Simulation
 26.5.2 Test Setup Investigations
 26.5.3 Road Tests
26.6 Measures to Reduce or Avoid Vibrations and Noise
 26.6.1 Measures at the Excitation Sources
 26.6.2 Measures at the Transfer System
26.6.3 Secondary Measures
26.7 Outlook and Prospects

27 Brakes with Nonmetallic Brake Discs
27.1 Introduction
 27.1.1 History
 27.1.2 Carbon Brake Discs
27.2 Material
 27.2.1 Definition, Properties, Applications
 27.2.2 Manufacture of a Carbon-Ceramic Brake Disc
 27.2.2.1 Manufacturing Process
 27.2.3 Quality Assurance
 27.2.3.1 Tests During Manufacture
 27.2.3.2 Random Sample Tests
27.3 Application
 27.3.1 Design of Ceramic Brakes
 27.3.1.1 Dimensioning of the Brake System
 27.3.1.2 Brake Disc Ring
 27.3.1.3 Brake Disc Chamber
 27.3.1.4 Brake Linings
 27.3.2 Influence of Ceramic Brakes on Vehicle Properties
 27.3.2.1 Influence on Braking Performance
 27.3.2.2 Influence on Driving Performances, Driving Properties, and Comfort
 27.3.3 Wear Behavior
 27.3.3.1 Abrasive Wear
 27.3.3.2 Cracking Due to Thermal Stresses
 27.3.3.3 Thermal Wear (Fiber Erosion)
 27.3.3.4 Wear Assessment
 27.4 Further Development of the Carbon-Ceramic Brake Disc Technology

28 Brake Fluid
28.1 Brake Fluid Types
 28.1.1 Glycol-, Glycol Ether-, and Borate Ester-Based Brake Fluids
 28.1.2 Silicone Ester-Based Brake Fluids
 28.1.3 Mineral Oil-Based Brake Fluids
28.2 National and International Standards
28.3 Brake Fluid Properties
 28.3.1 Vehicle-Specific Suitability
 28.3.2 Compatibility with Other Brake Fluids
 28.3.3 Physical Properties
28.4 Brake Fluid Handling and Storage
 28.4.1 Handling
 28.4.2 Storage
 28.4.3 Disposal

29 Brake Testing
29.1 Wheel Brake

29.1.1 Laboratory Tests
29.1.2 Dynanometer Tests
29.1.3 Road Tests

30 Safety and Reliability of Brake Systems
30.1 Brakes as Sources of Trouble
 30.1.1 Safety Considerations on Conventional Braking Devices
 30.1.2 Safety Considerations for Braking Systems Incorporating Newer Technologies
 30.1.2.1 System Reliability
 30.1.2.2 System Availability
 30.1.2.3 Requirements Pertaining to Electronic Safety Systems
30.2 Lean Testing in Automotive Industry
 30.2.1 Support in the Design and Development Phase
 30.2.2 Homologation
30.2.3 Field Experience
30.3 Developing the Basic Principles of Testing and Inspection
 30.3.1 Continuous Improvement of the Main Roadworthiness Inspection
 30.3.2 Future Homologation
31 Legislation and Testing Procedures
 31.1 Homologation Procedure in Europe and the United States
 31.2 Development Processes of Regulations in Europe and the United States
 31.2.1 Development Process for Regulations in the EU
 31.2.2 Development Process for Regulations at the UN ECE
 31.2.3 Development Process for Regulations in the United States
 31.3 European Regulations for Road Vehicles
 31.3.1 General Regulations, ECE Regulation 13, and EU Directive 71/320/EEC
 31.3.2 Performance Regulations
 31.3.3 The Distribution of Braking Forces and Compatibility Between Tractor and Trailer
 31.3.4 Regulations for ABS Systems
 31.3.5 Regulations for Complex Electronic Systems
 31.3.6 Testing Aftermarket Friction Linings
 31.4 United States Braking Regulation
 31.4.1 FMVSS 105—Hydraulic Braking Systems
 31.4.2 FMVSS 121—Pneumatic Braking Systems
 31.4.3 FMVSS 106—Brake Hose Assemblies
 31.4.4 FMVSS 116—Brake Fluids for Motor Vehicles
 31.5 Worldwide Harmonization
 31.5.1 FMVSS 135 and ECE R.13H
 31.5.2 Harmonization: A Look into the Future
32 Maintenance and Diagnosis of Brake Systems
 32.1 Influence of Standards, Regulations, and Laws in Practice
 32.2 Brake Diagnosis
 32.2.1 Noise and Vibrations
 32.2.2 Pedal Box
 32.3 Environment, Repair, and Maintenance at Fair Market Value
 32.4 Test Devices
33 Development Trends and Future Aspects
 33.1 Social and Economic Trends
 33.2 The Driver’s Task—Today and Tomorrow
 33.3 Quantum Leaps in New Technology
 33.4 Limits of Power-Assisted Systems—Potential of By-Wire Systems
 33.5 The Human-Machine Interface
 33.6 Examples of By-Wire Technologies and Assistance Systems in the Chassis Sector
 33.6.1 Throttle-by-Wire (E-Gas)
 33.6.2 Shift-by-Wire
 33.6.3 Steer-by-Wire
 33.6.4 Brake-by-Wire (EBH and EMB)
 33.6.5 Energy Management in the Car of the Future: The 42-Volt Onboard Network
 33.7 Global Chassis Control with Networked Assistance and Chassis Systems
 33.7.1 ESC II—Networking with Externally Controlled Lead Steering
 33.7.2 Electronic Air Suspension; Damper and Stabilizer Adjustment
 33.7.3 Technical and Economic Necessities
 33.7.4 APIA—The All-Encompassing Approach to Safety
 33.7.5 The Long-Term Goal of Accident Prevention

Chapters, Contributions, and Authors
Author Index
Index of Companies and Universities
Illustration Credits
About the Editors
Index
Color Section