This book focuses on using plastics in automobiles for traditional applications such as interiors and body panels, and for more advanced applications such as glazing and under-the-hood components. It provides application technology development for various aspects of automotive design—concept design, CAD modeling, predictive engineering methods through CAE, manufacturing method simulation, and prototype and tool making. It is based on a decade of research and real-world application of the authors.

Described are design and manufacturing aspects of energy absorbers, fenders, front-end modules, instrument panels, steering wheels, headlamp assemblies, throttle bodies, glazing, and tailgates, as well as exterior components such as roof racks, wipers, door handles, and rearview mirror assemblies. Using engineering thermoplastics for such applications will improve safety and reduce the weight of next-generation automobiles.

Readers will gain an understanding of design and manufacturing methodologies of plastics and the means to apply them to a particular vehicle platform. The intent is to help further engineering expertise about using plastics in automobiles so that they can be safer, lighter, and more energy efficient.

About the Editor
Sudhakar R. Marur led the plastics application technology laboratory, as its technical director, for SABIC Innovative Plastics in Bangalore, India. Under his leadership, the team developed plastics application solutions for automotive companies worldwide. He has more than 23 years of experience in industrial R&D. He earned his PhD from the Indian Institute of Technology (IIT), Bombay, specializing in computational nonlinear structural dynamics, and did his postdoctoral research on nonlinear vibrations and elementology at National Aerospace Laboratories.
Table of Contents

Preface ... xv

Chapter 1 Introduction to Plastics

Application Technology 1

1.1 Introduction ... 1

1.2 Application Development Cycle 2
 1.2.1 Voice of the Customer 2
 1.2.2 Benchmarking ... 2
 1.2.3 Material Selection 2
 1.2.4 Styling and Industrial Design 3
 1.2.5 Computer-Aided Design 3
 1.2.6 Computer-Aided Engineering 3
 1.2.7 Process Modeling 3
 1.2.8 Tooling ... 3
 1.2.9 Prototyping .. 4
 1.2.10 Secondary Operations 4
 1.2.11 Part Testing .. 4

1.3 Material Selection Methodology 4
 1.3.1 Screening of Material Properties 4
 1.3.2 Conversion Processes 5
 1.3.3 Structural Requirements 5
 1.3.4 Environmental Conditions 5
 1.3.5 Assembly and Secondary Operations 5
 1.3.6 Cost Factors .. 5
 1.3.7 Regulations and Standards Compliance 5

1.4 Advantages of Plastics 6
 1.4.1 Styling Freedom .. 6
 1.4.2 Material Property 6
 1.4.3 Performance .. 6
 1.4.4 Part Integration 7
 1.4.5 Weight Reduction 7
 1.4.6 System-Level Cost Reduction 7

1.5 Key Automotive Plastics Applications 7
 1.5.1 Safety and Energy Management 7
 1.5.2 Interiors and Occupant Safety 8
 1.5.3 Glazing .. 11
Table of Contents

1.5.4 Plastic-Metal Hybrid Structures ... 12
1.5.5 Headlamps .. 13
1.5.6 Body Panels .. 14
1.5.7 Under-the-Hood Components .. 15
1.6 Summary ... 17
1.7 References .. 17

Chapter 2 Crash and Energy Management Systems 23
2.1 Introduction .. 23
2.2 Safety as an Emerging Global Concern 25
2.3 Regulatory and New Car Assessment Program Crash Test Requirements .. 25
2.3.1 Pedestrian Impact Tests ... 26
2.3.2 Low-Speed Vehicle Damageability or Bumper Structural Tests .. 27
2.3.3 High-Speed Crashes for Occupant Protection 28
2.4 Impact and Energy-Absorption Efficiency 29
2.5 Design of Energy-Absorbing Elements 32
2.6 Pedestrian Protection ... 33
2.6.1 Vehicle Bumper Stiffness Profile .. 33
2.6.2 Design of Pedestrian-Safe Bumper Systems 36
2.6.3 Pedestrian Energy Absorbers .. 43
2.6.3.1 Pedestrian Energy Absorbers—Middle Load Path 43
2.6.3.2 SUV Energy Absorbers—Upper Load Path 47
2.6.3.3 Undertray—Lower Load Path 49
2.7 Countermeasures for Low-Speed Vehicle Damageability Tests .. 51
2.7.1 Bumper Design Challenges ... 51
2.7.2 Thermoplastic Solitary Beam Solutions 54
2.7.3 Hybrid Plastic-Metal Bumper Beam Solutions 58
2.8 Low-Speed Damageability and Lower-Leg Impact-Compliant Bumper System ... 61
2.8.1 Conflicting Energy-Absorbing Requirements for Bumpers .. 61
2.8.2 Dual-Stage Energy-Absorber Approach 63
2.8.3 Performance Evaluation .. 65
2.9 Vehicle Structural Integrity for High-Speed Crashes 66
2.9.1 Hybrid Rail Extensions for Frontal Crashes 67
Table of Contents

2.9.2 Plastic Reinforced Body-in-White Structures 72
2.9.3 A Case Study on Roof Crush Countermeasures 74
2.10 Summary ... 78
2.11 Trends ... 79
2.12 References .. 80

Chapter 3 Interiors ... 87

3.1 Introduction .. 87
3.2 Instrument Panel .. 89
 3.2.1 Key Drivers in Instrument Panel Design 89
 3.2.2 Automotive Instrument Panel Carriers 89
 3.2.2.1 Occupant Safety: Head and Knee Impact 89
 3.2.2.2 Processing Challenges of Instrument
 Panel Carriers 91
 3.2.2.3 Mold-Filling Simulations of Instrument
 Panel Carriers 92
 3.2.3 Seamless Airbag Design 92
 3.2.3.1 Tear Seam Plaque Study 94
 3.2.4 Knee Bolster .. 94
 3.2.5 Center Console 95
3.3 Steering Wheel .. 97
 3.3.1 Introduction .. 97
 3.3.2 Metal versus Plastic 98
 3.3.3 Design Technology................................... 99
 3.3.4 Materials .. 101
 3.3.5 Performance Requirements 101
 3.3.5.1 Role of Predictive Engineering 102
 3.3.6 Prototyping and Testing 103
3.4 Interior Components 105
 3.4.1 Roof Energy Absorber............................... 106
 3.4.2 Door Handle and Door Pull Cup 110
 3.4.3 Speaker Grille Cover 112
3.5 Summary .. 113
3.6 Trends .. 113
3.7 References ... 114

Chapter 4 Glazing Applications 117

4.1 Automotive Glazing Overview 117
4.2 Automotive Glazing and Global Regulations 118
Table of Contents

4.3 Automotive Glazing—Role of Polycarbonate 118
 4.3.1 Weight Reduction 119
 4.3.2 Styling and Design Freedom 119
4.4 Characteristics of a Glazing System 120
4.5 Structural Performance 123
 4.5.1 Design for Structural Stiffness 123
 4.5.2 Role of Restraints 123
 4.5.3 Role of Curvature 124
 4.5.4 Role of Thickness 125
 4.5.5 Importance of Adhesive and Its Characterization 126
 4.5.6 Adhesive Testing—Uniaxial Tension 126
 4.5.7 Dimensional Stability—Effect of the Coefficient of
 Thermal Expansion 128
 4.5.8 Simulations and Experiments 129
 4.5.9 Design of Experiments Approach 130
4.6 Acoustic Performance 133
 4.6.1 Transmission Loss 133
 4.6.2 Transmission Loss Spectrum: Glass
 versus Polycarbonate 135
 4.6.3 Sound Transmission Loss Performance 135
4.7 Thermal Management 137
 4.7.1 Thermal Modeling of Semitransparent Materials:
 Spectral Transmission and Absorption 138
 4.7.2 HVAC Load—Advantages of Polycarbonate 139
 4.7.3 Improved Performance of Electric Vehicles 144
 4.7.4 Soak Performance of Polycarbonate Glazing 147
4.8 Conversion Process 152
 4.8.1 Two-Shot Injection Compression Molding 154
 4.8.2 First-Shot Injection Compression Molding 154
 4.8.3 Sequential Injection Compression Molding 156
 4.8.4 Simultaneous Injection Compression Molding 157
 4.8.5 Breathing Injection Compression Molding 157
 4.8.6 Second-Shot Injection Overmolding Process 157
 4.8.7 Prediction Methodology of Two-Shot Injection
 Compression Molding Process 158
 4.8.8 Part and Tool Development 158
 4.8.9 Filling Correlation 160
 4.8.10 Warpage Methodology Development 161
4.8.11 Measurement Setup .. 161
4.8.12 Approach .. 163
4.9 Summary .. 165
4.10 Trends .. 166
4.11 References ... 166

Chapter 5 Plastic-Metal Hybrid (PMH) Structures 171

5.1 Introduction .. 171
5.2 Why Hybrid Designs? ... 172
5.3 Types of Hybrids ... 173
 5.3.1 Overmolding ... 173
 5.3.2 Adhesive Bonding 174
 5.3.3 Collar Joining ... 175
 5.3.4 Polymer Injection Forming 175
 5.3.5 Direct Metal Deposition 175
 5.3.6 Mechanical Fasteners 176
 5.3.7 Heat Staking .. 176
5.4 Reinforcing Structure ... 176
 5.4.1 Closed-Channel Hybrid Structures 176
 5.4.2 Open-Channel Hybrid Structures 179
5.5 Processing of Hybrids .. 182
 5.5.1 Processing of Closed-Channel Hybrid Structures ... 182
 5.5.2 Processing of Open-Channel Hybrid Structures 184
 5.5.3 Mold Design ... 185
5.6 Performance of Hybrid Structures 186
5.7 Application of Plastic-Metal Hybrids 188
 5.7.1 Front-End Module Application Development 189
 5.7.2 Design Methodology 193
 5.7.3 Performance Evaluation 195
5.8 Summary .. 198
5.9 Trends .. 200
5.10 References ... 200

Chapter 6 Headlamp Applications 205

6.1 Automotive Lighting Overview 205
6.2 Automotive Lighting Global Regulations 207
6.3 Automotive Lighting—Role of Thermoplastics 207
6.4 Headlamp Reflectors ... 208
 6.4.1 Material Replacement 208
Table of Contents

6.4.2 Thermal Management .. 212
6.4.3 Structural Performance 219
6.4.4 Beam Pattern and Optical Performance 222
6.4.5 Stress-Free Reflector through Reflector Bracket 226
6.4.6 Tooling and Processing 230
6.4.7 Gate Design ... 230
6.4.8 Venting .. 232
6.4.9 Tool Thermal Management 232
6.4.10 Tool Surface Treatment 233
6.4.11 Processing ... 234
6.5 Headlamp Bezels .. 234
6.6 Headlamp Lenses .. 235
6.7 Headlamp Assembly—Pedestrian Safety 237
6.8 Summary ... 242
6.9 Trends .. 242
6.10 References .. 243

Chapter 7 Body Panels .. 247
7.1 Introduction .. 247
7.2 Functional Requirements for Body Panels 249
 7.2.1 Material Selection in Engineering Thermoplastics
 Body Panels ... 251
7.3 Fenders .. 252
 7.3.1 Manufacturing Considerations in Fender Design 254
 7.3.2 Design for Paintability 258
 7.3.3 Material Characterization and Material Model for
 Fender Predictive Studies 264
 7.3.4 Case Study of Finite Element Analysis to Optimize
 Support Configuration 265
 7.3.5 Fender Impact Resistance 267
7.4 Design and Development of the Thermoplastic Tailgates 268
 7.4.1 Functional Requirements of Thermoplastic Tailgates ... 269
 7.4.2 Tailgate Impact Resistance and Structural Rigidity 271
7.5 Tank Flap ... 271
7.6 Spoiler .. 272
7.7 Summary ... 273
7.8 Trends .. 273
7.9 References .. 274
Chapter 8 Under-the-Hood Applications

8.1 Introduction ... 277
8.2 Material Requirements for Under-the-Hood Applications 278
 8.2.1 Heat Aging ... 278
 8.2.2 Chemical Resistance 279
 8.2.3 Types of Engineering Plastics in Under-the-Hood Applications 280
8.3 Under-the-Hood Application Examples 282
 8.3.1 Oil Pans .. 283
 8.3.2 Wire Coating 284
 8.3.3 Engine Cover 285
 8.3.4 Fuel Lines .. 287
8.4 Designing of Under-the-Hood Components 287
 8.4.1 Turbo Air Duct 288
 8.4.1.1 Design Validation 290
 8.4.2 Throttle Body 292
 8.4.2.1 Types of Throttle Body 292
 8.4.2.2 Materials for the Throttle Body 293
 8.4.2.3 Predictive Tools to Drive Thermoplastics Usage in Electronic Throttle Body 294
 8.4.2.4 Processing of Throttle Body 297
 8.4.2.5 Current Status of Thermoplastics in Electronic Throttle Body 299
8.5 Summary .. 300
8.6 Trends .. 300
 8.6.1 Material Advancements 301
 8.6.2 Processing Advancements 301
 8.6.3 Secondary Process Advancements 302
 8.6.4 Design Trends 302
 8.6.5 Green Trends 303
8.7 References ... 303

Chapter 9 Sustainability in the Automotive Industry

9.1 Introduction ... 307
 9.1.1 Sustainability Trends in the Automotive Industry 308
9.2 Lightweighting and Fuel Efficiency 308
 9.2.1 Materials for Lightweighting 309
Table of Contents

9.2.2 Quantifying Environmental Benefits of Lightweighting through Life Cycle Assessment ... 311
9.2.3 Life Cycle Assessment Case Studies for Lightweight Materials ... 311
9.2.4 The Future of Lightweighting with Plastics 314
9.2.5 Design for Sustainability ... 314
9.3 Renewable-Sourced or Bio-Based Materials for the Automotive Industry ... 315
9.3.1 Why Renewable Resources? ... 315
9.3.2 Carbon Footprint of Bio-Based Raw Materials 316
9.3.3 Bio-Based Materials for Plastics 317
 9.3.3.1 Cellulosic Plant Fibers .. 317
 9.3.3.2 Bio-Based Polymers Made from Monomers or Intermediates from Renewable Resources 319
 9.3.3.3 Highly Biodegradable Polymers from Renewable Resources ... 320
9.3.4 Limitations of Sourcing Raw Materials from Renewable Resources to Make Polymers 322
9.3.5 Emerging Bio-Based Raw Materials 322
9.3.6 Bio-Based Plastics for the Future Automotive Industry 323
9.4 End-of-Life Scenarios .. 324
 9.4.1 Recycling in the Automotive Industry 324
 9.4.2 End-of-Life Options for Selected Polymer Families 326
 9.4.3 Challenges and Limitations to Plastics Recycling 326
 9.4.4 Effect of Recycling on Carbon Footprint Reduction 330
 9.4.5 Reuse .. 330
 9.4.6 End-of-Life Scenario for the Future 330
9.5 Summary ... 331
9.6 Trends .. 331
9.7 References .. 332

Abbreviations ... 341

Index .. 345

About the Editor .. 353

Contributors ... 353

xiv
This book focuses on using plastics in automobiles for traditional applications such as interiors and body panels, and for more advanced applications such as glazing and under-the-hood components. It provides application technology development for various aspects of automotive design—concept design, CAD modeling, predictive engineering methods through CAE, manufacturing method simulation, and prototype and tool making. It is based on a decade of research and real-world application of the authors.

Described are design and manufacturing aspects of energy absorbers, fenders, front-end modules, instrument panels, steering wheels, headlamp assemblies, throttle bodies, glazing, and tailgates, as well as exterior components such as roof racks, wipers, door handles, and rearview mirror assemblies. Using engineering thermoplastics for such applications will improve safety and reduce the weight of next-generation automobiles.

Readers will gain an understanding of design and manufacturing methodologies of plastics and the means to apply them to a particular vehicle platform. The intent is to help further engineering expertise about using plastics in automobiles so that they can be safer, lighter, and more energy efficient.

About the Editor Sudhakar R. Marur led the plastics application technology laboratory, as its technical director, for SABIC Innovative Plastics in Bangalore, India. Under his leadership, the team developed plastics application solutions for automotive companies worldwide. He has more than 23 years of experience in industrial R&D. He earned his PhD from the Indian Institute of Technology (IIT), Bombay, specializing in computational nonlinear structural dynamics, and did his postdoctoral research on nonlinear vibrations and elementology at National Aerospace Laboratories.