1. Tire Characteristics and Vehicle Handling and Stability
 1.1. Introduction 2
 1.2. Tire and Axle Characteristics 3
 1.2.1. Introduction to Tire Characteristics 3
 1.2.2. Effective Axle Cornering Characteristics 7
 1.3. Vehicle Handling and Stability 16
 1.3.1. Differential Equations for Plane Vehicle Motions 17
 1.3.2. Linear Analysis of the Two-Degree-of-Freedom Model 22
 1.3.3. Nonlinear Steady-State Cornering Solutions 35
 1.3.4. The Vehicle at Braking or Driving 49
 1.3.5. The Moment Method 51
 1.3.6. The Car-Trailer Combination 53
 1.3.7. Vehicle Dynamics at More Complex Tire Slip Conditions 57

2. Basic Tire Modeling Considerations
 2.1. Introduction 59
 2.2. Definition of Tire Input Quantities 61
 2.3. Assessment of Tire Input Motion Components 68
 2.4. Fundamental Differential Equations for a Rolling and Slipping Body 72
 2.5. Tire Models (Introductory Discussion) 81

3. Theory of Steady-State Slip Force and Moment Generation
 3.1. Introduction 87
 3.2. Tire Brush Model 90
 3.2.1. Pure Side Slip 92
 3.2.2. Pure Longitudinal Slip 97
 3.2.3. Interaction between Lateral and Longitudinal Slip (Combined Slip) 100
 3.2.4. Camber and Turning (Spin) 112
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Subsection</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.</td>
<td>The Tread Simulation Model</td>
<td></td>
<td>128</td>
</tr>
<tr>
<td>3.4.</td>
<td>Application: Vehicle Stability at Braking up to Wheel Lock</td>
<td></td>
<td>140</td>
</tr>
<tr>
<td>4.</td>
<td>Semi-Empirical Tire Models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.</td>
<td>Introduction</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>4.2.</td>
<td>The Similarity Method</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>4.2.1.</td>
<td>Pure Slip Conditions</td>
<td></td>
<td>152</td>
</tr>
<tr>
<td>4.2.2.</td>
<td>Combined Slip Conditions</td>
<td></td>
<td>158</td>
</tr>
<tr>
<td>4.2.3.</td>
<td>Combined Slip Conditions with F_x as Input Variable</td>
<td></td>
<td>163</td>
</tr>
<tr>
<td>4.3.</td>
<td>The Magic Formula Tire Model</td>
<td></td>
<td>165</td>
</tr>
<tr>
<td>4.3.1.</td>
<td>Model Description</td>
<td></td>
<td>165</td>
</tr>
<tr>
<td>4.3.2.</td>
<td>Full Set of Equations</td>
<td></td>
<td>176</td>
</tr>
<tr>
<td>4.3.3.</td>
<td>Extension of the Model for Turn Slip</td>
<td></td>
<td>183</td>
</tr>
<tr>
<td>4.3.4.</td>
<td>Ply-Steer and Conicity</td>
<td></td>
<td>191</td>
</tr>
<tr>
<td>4.3.5.</td>
<td>The Overturning Couple</td>
<td></td>
<td>196</td>
</tr>
<tr>
<td>4.3.6.</td>
<td>Comparison with Experimental Data for a Car, a Truck, and a Motorcycle Tire</td>
<td></td>
<td>202</td>
</tr>
<tr>
<td>5.</td>
<td>Non-Steady-State Out-of-Plane String-Based Tire Models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.</td>
<td>Introduction</td>
<td></td>
<td>212</td>
</tr>
<tr>
<td>5.2.</td>
<td>Review of Earlier Research</td>
<td></td>
<td>212</td>
</tr>
<tr>
<td>5.3.</td>
<td>The Stretched String Model</td>
<td></td>
<td>215</td>
</tr>
<tr>
<td>5.3.1.</td>
<td>Model Development</td>
<td></td>
<td>216</td>
</tr>
<tr>
<td>5.3.2.</td>
<td>Step and Steady-State Response of the String Model</td>
<td></td>
<td>225</td>
</tr>
<tr>
<td>5.3.3.</td>
<td>Frequency Response Functions of the String Model</td>
<td></td>
<td>232</td>
</tr>
<tr>
<td>5.4.</td>
<td>Approximations and Other Models</td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>5.4.1.</td>
<td>Approximate Models</td>
<td></td>
<td>241</td>
</tr>
<tr>
<td>5.4.2.</td>
<td>Other Models</td>
<td></td>
<td>256</td>
</tr>
<tr>
<td>5.4.3.</td>
<td>Enhanced String Model with Tread Elements</td>
<td></td>
<td>258</td>
</tr>
<tr>
<td>5.5.</td>
<td>Tire Inertia Effects</td>
<td></td>
<td>268</td>
</tr>
<tr>
<td>5.5.1.</td>
<td>First Approximation of Dynamic Influence (Gyroscopic Couple)</td>
<td></td>
<td>269</td>
</tr>
<tr>
<td>5.5.2.</td>
<td>Second Approximation of Dynamic Influence (First Harmonic)</td>
<td></td>
<td>271</td>
</tr>
<tr>
<td>5.6.</td>
<td>Side Force Response to Time-Varying Load</td>
<td></td>
<td>277</td>
</tr>
<tr>
<td>5.6.1.</td>
<td>String Model with Tread Elements Subjected to Load Variations</td>
<td></td>
<td>277</td>
</tr>
<tr>
<td>5.6.2.</td>
<td>Adapted Bare String Model</td>
<td></td>
<td>281</td>
</tr>
<tr>
<td>5.6.3.</td>
<td>The Force and Moment Response</td>
<td></td>
<td>284</td>
</tr>
<tr>
<td>6.</td>
<td>Theory of the Wheel Shimmy Phenomenon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1.</td>
<td>Introduction</td>
<td></td>
<td>287</td>
</tr>
<tr>
<td>6.2.</td>
<td>The Simple Trailing Wheel System with Yaw Degree of Freedom</td>
<td></td>
<td>288</td>
</tr>
</tbody>
</table>
Contents

6.3. Systems with Yaw and Lateral Degrees of Freedom 295
 6.3.1. Yaw and Lateral Degrees of Freedom with Rigid Wheel/Tire (Third Order) 296
 6.3.2. The Fifth-Order System 297

6.4. Shimmy and Energy Flow 311
 6.4.1. Unstable Modes and the Energy Circle 311
 6.4.2. Transformation of Forward Motion Energy into Shimmy Energy 317

6.5. Nonlinear Shimmy Oscillations 320

7. Single-Contact-Point Transient Tire Models 329
 7.1. Introduction 330
 7.2. Model Development 330
 7.2.1. Linear Model 330
 7.2.2. Semi-Non-Linear Model 335
 7.2.3. Fully Nonlinear Model 336
 7.2.4. Nonlagging Part 345
 7.2.5. The Gyroscopic Couple 348
 7.3. Enhanced Nonlinear Transient Tire Model 349

8. Applications of Transient Tire Models 356
 8.1. Vehicle Response to Steer Angle Variations 356
 8.2. Cornering on Undulated Roads 356
 8.3. Longitudinal Force Response to Tire Nonuniformity, Axle Motions, and Road Unevenness 366
 8.3.1. Effective Rolling Radius Variations at Free Rolling 367
 8.3.2. Computation of the Horizontal Longitudinal Force Response 371
 8.3.3. Frequency Response to Vertical Axle Motions 374
 8.3.4. Frequency Response to Radial Run-out 376
 8.4. Forced Steering Vibrations 379
 8.4.1. Dynamics of the Unloaded System Excited by Wheel Unbalance 380
 8.4.2. Dynamics of the Loaded System with Tire Properties Included 382
 8.5. ABS Braking on Undulated Road 385
 8.5.1. In-Plane Model of Suspension and Wheel/Tire Assembly 386
 8.5.2. Antilock Braking Algorithm and Simulation 390
 8.6. Starting from Standstill 394

9. Short Wavelength Intermediate Frequency Tire Model 404
 9.1. Introduction 404
9.2. The Contact Patch Slip Model 406
 9.2.1. Brush Model Non-Steady-State Behavior 406
 9.2.2. The Model Adapted to the Use of the *Magic Formula* 426
 9.2.3. Parking Maneuvers 436
9.3. Tire Dynamics 444
 9.3.1. Dynamic Equations 444
 9.3.2. Constitutive Relations 453
9.4. Dynamic Tire Model Performance 462
 9.4.1. Dedicated Dynamic Test Facilities 463
 9.4.2. Dynamic Tire Simulation and Experimental Results 466

10. Dynamic Tire Response to Short Road Unevennesses 475
 10.1. Model Development 476
 10.1.1. Tire Envelopment Properties 476
 10.1.2. The Effective Road Plane Using Basic Functions 478
 10.1.3. The Effective Road Plane Using the 'Cam' Road Feeler Concept 485
 10.1.4. The Effective Rolling Radius When Rolling Over a Cleat 487
 10.1.5. The Location of the Effective Road Plane 493
 10.2. *SWIFT* on Road Unevennesses (Simulation and Experiment) 497
 10.2.1. Two-Dimensional Unevennesses 497
 10.2.2. Three-Dimensional Unevennesses 504

11. Motorcycle Dynamics 506
 11.1. Introduction 508
 11.2. Model Description 509
 11.2.1. Geometry and Inertia 509
 11.2.2. The Steer, Camber, and Slip Angles 511
 11.2.3. Air Drag, Driving or Braking, and Fore-and-Aft Load Transfer 514
 11.2.4. Tire Force and Moment Response 515
 11.3. Linear Equations of Motion 520
 11.3.1. The Kinetic Energy 521
 11.3.2. The Potential Energy and the Dissipation Function 523
 11.3.3. The Virtual Work 524
 11.3.4. Complete Set of Linear Differential Equations 525
 11.4. Stability Analysis and Step Responses 529
 11.4.1. Free Uncontrolled Motion 529
 11.4.2. Step Responses of Controlled Motion 536
 11.5. Analysis of Steady-State Cornering 539
 11.5.1. Linear Steady-State Theory 540
 11.5.2. Non-Linear Analysis of Steady-State Cornering 555
 11.5.3. Modes of Vibration at Large Lateral Accelerations 563
 11.6. The Magic Formula Tire Model 565
Contents

12. Tire Steady-State and Dynamic Test Facilities 567

13. Outlines of Three Advanced Dynamic Tire Models

<table>
<thead>
<tr>
<th>Introduction</th>
<th>577</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1. The RMOD-K Tire Model (Christian Oertel)</td>
<td>578</td>
</tr>
<tr>
<td>13.1.1. The Nonlinear FEM Model</td>
<td>578</td>
</tr>
<tr>
<td>13.1.2. The Flexible Belt Model</td>
<td>579</td>
</tr>
<tr>
<td>13.1.3. Comparison of Various RMOD-K Models</td>
<td>581</td>
</tr>
<tr>
<td>13.2. The Ftire Tire Model (Michael Gipser)</td>
<td>582</td>
</tr>
<tr>
<td>13.2.1. Introduction</td>
<td>582</td>
</tr>
<tr>
<td>13.2.2. Structure Model</td>
<td>583</td>
</tr>
<tr>
<td>13.2.3. Tread Model</td>
<td>584</td>
</tr>
<tr>
<td>13.2.4. Model Data and Parametrization</td>
<td>586</td>
</tr>
<tr>
<td>13.3. The MF-Swift Tire Model (Igo Besselink)</td>
<td>586</td>
</tr>
<tr>
<td>13.3.1. Introduction</td>
<td>586</td>
</tr>
<tr>
<td>13.3.2. Model Overview</td>
<td>587</td>
</tr>
<tr>
<td>13.3.3. MF-Tire/MF-Swift</td>
<td>588</td>
</tr>
<tr>
<td>13.3.4. Parameter Identification</td>
<td>589</td>
</tr>
<tr>
<td>13.3.5. Test and Model Comparison</td>
<td>589</td>
</tr>
</tbody>
</table>

References 593
List of Symbols 603
Appendix 1. Sign Conventions for Force and Moment and Wheel Slip 609
Appendix 2. Online Information 611
Appendix 3. *MF-Tire/MF-Swift* Parameters and Estimation Methods 613
Index 627
Exercises

Exercise 1.1. Construction of effective axle characteristics at load transfer

Exercise 1.2. Four-wheel steer, at the condition that the vehicle slip angle vanishes

Exercise 1.3. Construction of the complete handling diagram from pairs of axle characteristics

Exercise 1.4. Stability of a trailer

Exercise 2.1. Slip and rolling speed of a wheel steered about a vertical axis

Exercise 2.2. Slip and rolling speed of a wheel steered about an inclined axis (motorcycle)

Exercise 2.3. Partial differential equations with longitudinal slip included

Exercise 3.1. Characteristics of the brush model

Exercise 4.1. Assessment of off-nominal tire side force characteristics and combined slip characteristics with F_x as input quantity

Exercise 4.2. Assessment of force and moment characteristics at pure and combined slip using the Magic Formula and the Similarity Method with κ as input

Exercise 5.1. String model at steady turn slip

Exercise 6.1. Influence of the tyre inertia on the stability boundary

Exercise 6.2. Zero energy circle applied to the simple trailing wheel system

Exercise 7.1. Wheel subjected to camber, lateral and vertical axle oscillations

Exercise 8.1. Response to tyre stiffness variations

Exercise 8.2. Self-excited wheel hop

We may also refer to the online information, cf. App. 2, containing MATLAB applications.
TIRE AND VEHICLE DYNAMICS

HANS PACEJKA

The definitive book on tire mechanics by the acknowledged world expert

- Covers everything you need to know about pneumatic tires and their impact on vehicle performance, including mathematic modeling and its practical application
- Written by the acknowledged world authority on the topic and the name behind the most widely used model, Pacejka's 'Magic Formula'
- Updated with the latest information on new and evolving tire models to ensure you can select the right model for your needs, apply it appropriately and understand its limitations

In this well-known resource, leading tire model expert Hans Pacejka explains the relationship between operational variables, vehicle variables and tire modeling, taking you on a journey through the effective modeling of complex tire and vehicle dynamics problems.

Covering the latest developments to Pacejka's own industry-leading model as well as the widely used models of other pioneers in the field, the book combines theory, guidance, discussion and insight in one comprehensive reference.

While the details of individual tire models are available in technical papers published by SAE, FISITA and other automotive organizations, TIRE AND VEHICLE DYNAMICS remains the only reliable collection of information on the topic and the standard go-to resource for any engineer or researcher working in the area.

'...packed with relevant information and insight that is difficult to find in any other single place.'

- Amazon.co.uk reviewer

Also available on automotive engineering from Butterworth-Heinemann
Abe • Vehicle Handling Dynamics • ISBN 9781856177498
Chen & Trapp • Automotive Buzz, Rattle and Squeak • ISBN 9780750684965
Martyr & Plint • Engine Testing, 4th edition • ISBN 9780080969497