CHAPTER 2
Instrumentation and Test Facilities

2.1 Performance Characteristics of Instruments
 2.1.1 Frequency Response
 2.1.2 Dynamic Range
 2.1.3 Crest Factor
 2.1.4 Response Time

2.2 Sound Measurements
 2.2.1 Selection of a Microphone
 2.2.1.1 Free-Field Microphone
 2.2.1.2 Random Incidence Microphone
 2.2.1.3 Pressure Microphone
 2.2.2 Sound Level Meter
 2.2.3 Sound Intensity Probe
 2.2.4 Binaural Measurement System
 2.2.5 Near-Field Acoustic Holography and Beamforming

2.3 Vibration Measurements
 2.3.1 Accelerometers
 2.3.2 Impedance Head
 2.3.3 Laser Vibrometer

2.4 Test Facilities
 2.4.1 Reverberation Room
 2.4.1.1 Diffusers
 2.4.2 Anechoic or Hemi-anechoic Room
 2.4.2.1 Wedge Absorber
 2.4.2.2 Flat Panel Absorber

References

Additional Reading

CHAPTER 3
Hearing Parameters

3.1 Hearing Sound

3.2 Equal Loudness Level Contour
 3.2.1 Loudness Level (Phon)
 3.2.2 Loudness (Sone)

3.3 Loudness of Complex Sounds
Chapter 3: Additional Metrics

3.4 Additional Metrics
- 3.4.1 Sharpness
- 3.4.2 Booming
- 3.4.3 Roughness and Fluctuation Strength

3.5 Articulation Index

References

Chapter 4: Vehicle Noise Sources and Solutions

4.1 Vehicle Noise Sources
- 4.1.1 Propulsion System Noises Related to ICE Vehicles
 - 4.1.1.1 Engine Noise
 - 4.1.1.2 Transmission Noise
 - 4.1.1.3 Cooling System
 - 4.1.1.4 Intake Noise
 - 4.1.1.5 Exhaust Noise
- 4.1.2 Propulsion System Noises Related to EVs
 - 4.1.2.1 Motor Noise
 - 4.1.2.2 Gear Reduction System Noise
 - 4.1.2.3 Inverter Noise
- 4.1.3 Brake Noise
- 4.1.4 Road Noise
- 4.1.5 Tire Noise
- 4.1.6 Wind Noise
 - 4.1.6.1 Wind Flutter
 - 4.1.6.2 Windrush
- 4.1.7 Relative Spectral Distribution between ICE and EV

4.2 Some Specialty Noises
- 4.2.1 Climate Control (HVAC) Noise
- 4.2.2 Power Accessory Noise

4.3 The Noise System
- 4.3.1 Source-Path-Receiver System

4.4 Noise Control Design Approach: Source, Path, and Receiver
- 4.4.1 Noise Control at the Source
Chapter 4: Noise Control

4.4.2 Noise Control along the Path

- **4.4.2.1 Materials for Airborne Noise Control**
- **4.4.2.2 Materials for Structure-Borne Noise Control**

4.4.3 Noise Control at the Receiver

Chapter 5: Sound Absorber

5.1 Sound Absorption Materials and Their Applications

- **5.1.1 Typical Materials**
- **5.1.2 Typical Absorber Applications**

5.2 Acoustical Descriptor of an Absorber

- **5.2.1 Sound Absorption Coefficients**
 - 5.2.1.1 Normal Incidence Sound Absorption Coefficient
 - 5.2.1.2 Random Incidence Sound Absorption Coefficient
 - 5.2.1.3 Statistical (Energy) Sound Absorption Coefficient

5.3 How Does It Work

- **5.3.1 Various Factors Effecting Sound Absorption**

5.4 Particle Velocity and Thickness

- **5.4.1 Thickness, Density, and Air Gap**

5.5 How Sound Is Absorbed

- **5.5.1 Porosity**
- **5.5.2 Airflow Resistivity**
- **5.5.3 Tortuosity**
- **5.5.4 Viscous Length**
- **5.5.5 Thermal Length**
- **5.5.6 Predicting Sound Absorption Performance**

5.6 Absorber Surface Treatment

- **5.6.1 Film**
- **5.6.2 Film with an Opening: Helmholtz Resonator**
- **5.6.3 Perforated Film with Absorber Backing**
- **5.6.4 Scrim**

References

- Additional Reading

References

- Additional Reading
CHAPTER 6

Sound Barrier

6.1 Barrier Materials and Their Applications
- **6.1.1 Typical Materials**
- **6.1.2 Typical Barrier Applications**

6.2 Acoustical Descriptor of a Barrier

6.3 How Does It Work
- **6.3.1 Nonporous**
- **6.3.2 Limp**
- **6.3.3 Massive**

6.4 Sound Transmission Loss Performance
- **6.4.1 Region I: Stiffness and Resonance-Controlled Region**
- **6.4.2 Region II: Mass-Controlled Region**
- **6.4.3 Region III: Coincidence and Stiffness-Controlled Region**

6.5 Mass Law Performance of a Panel
- **6.5.1 Normal Incidence**
- **6.5.2 Grazing Incidence**
- **6.5.3 Random Incidence**
- **6.5.4 Field Incidence**

6.6 Sound Transmission Loss of Single Wall Constructions

6.7 Sound Transmission Loss of Double Wall Constructions
- **6.7.1 Coupled Mass Region**
- **6.7.2 Double Wall Resonance Point**
- **6.7.3 Transition Region**
- **6.7.4 Intercept Point**
- **6.7.5 Double-Wall Decoupled Region**

6.8 Effect of Holes in a Barrier

6.9 Dissipative System

References

Additional Reading

CHAPTER 7

Vibration Damper

7.1 Damping Materials and Their Applications
- **7.1.1 Typical Materials**
- **7.1.2 Typical Damper Applications**
CHAPTER 9

Test Methods

9.1 Standards and Specifications
 9.1.1 Standards
 9.1.2 Specifications

9.2 Different Test Methods

9.3 Airflow Resistance Tests

9.4 Sound Absorption Tests
 9.4.1 Normal Incidence Sound Absorption Test
 9.4.1.1 Roving Microphone and Standing Wave Ratio Method
 9.4.1.2 Two-Microphone Method
 9.4.1.3 Results of Normal Incidence Sound Absorption Tests
 9.4.2 Random Incidence Sound Absorption Test
 9.4.3 Differences between Normal and Random Incidence Sound Absorption Tests

9.5 Sound Transmission Loss Tests
 9.5.1 Normal Incidence STL Test
 9.5.2 Field Incidence STL Test
 9.5.2.1 Correlation Factor Based Measurement
 9.5.2.2 Two Reverberation Room Based Measurement
 9.5.2.3 Sound Intensity Based Measurement
 9.5.3 IL Tests for Body Cavity Filler Materials

9.6 Vibration Damping Tests
 9.6.1 Complex Modulus Test (Oberst Bar Test)
 9.6.1.1 System Performance Based Measurement
 9.6.1.2 Material Property Evaluation Based Measurement
 9.6.2 Mechanical Impedance Test (CenterPoint Test)

9.7 A Few Other Material Testing Methods
 9.7.1 Apamat and Acoustic Gravelometer
 9.7.2 Panel Damping Measurement

9.8 Component Level Tests
 9.8.1 Airborne Noise Test
 9.8.2 Structure-Borne Noise Test

9.9 Vehicle Level Tests
 9.9.1 Engine Noise Test
 9.9.2 Road Noise Test
 9.9.3 Wind Noise Test

References
 Additional Reading
CHAPTER 10

Closing the Loop

10.1 Speed of Sound with Temperature, Humidity, and Barometric Pressure

10.2 Addition and Subtraction of Decibels
 10.2.1 Mathematical Approach
 10.2.2 Nomogram Approach
 10.2.3 Shortcut Approach

10.3 Test Facilities
 10.3.1 Facility Site Selection
 10.3.2 Design Goals for Testing Needs and Requirements
 10.3.3 Laboratory Layout and Dimensions
 10.3.4 HVAC and Mechanical Equipment System Design

10.4 Designing a Reverberation Room
 10.4.1 Cutoff Frequency
 10.4.2 Schroeder Frequency
 10.4.3 Room Dimensions
 10.4.4 Normal Modes

10.5 Size of Anechoic and Hemi-anechoic Rooms

10.6 Reduced Frequency Nomogram

10.7 Some Thoughts on Statistical Energy Analysis

10.8 How to Develop Acoustic Targets for Sound Package Treatments

10.9 Testing of Passthroughs

References

Additional Reading

Index