Finite Element Analysis (FEA) has been widely implemented by the automotive industry as a product design tool for design engineers who use it to reduce product development time and cost. This book serves as a guide for FEA users and addresses the specific needs of design engineers. It provides clear presentation of FEA fundamentals and implementation that will help practitioners to avoid misapplication of this tool. Easy to follow examples of FEA fundamentals are clearly presented and are ready for implementation during the product design process. The FEA is fully explored in this practical approach that includes:

- Understanding FEA basics
- Commonly used modeling techniques
- Commonly used types of FEA analyses
- Frequently made FEA errors and their effect on the quality of results
- Implementation of FEA in the design process
- Hands-on simple and informative exercises

This indispensable guide provides design engineers with proven methods to analyze their own work while it is still in the form of easily modifiable CAD models. Exercises provide examples for improving the FEA hands-on process to deliver quick turnaround times and prompt implementation.

About the Author:
Dr. Paul Kurowski is a professor in the Department of Mechanical and Materials Engineering at the University of Western Ontario in London, Ontario, Canada. His teaching includes finite element analysis, machine design, kinematics and dynamics of machines, mechanical vibration, computer aided engineering and product design. He is also the President of Design Generator Inc., a consulting firm specializing in design analysis and training in Computer Aided Engineering methods. Dr. Kurowski has published multiple technical papers and taught professional development seminars for the SAE International, the American Society of Mechanical Engineers, the Association of Professional Engineers of Ontario, the Parametric Technology Corp. (PTC), Rand Worldwide, SOLIDWORKS Corp. and other companies and professional organizations. He is a member of the SAE International and the Association of Professional Engineers of Ontario. Dr. Kurowski obtained his M.Sc. and Ph.D. in Applied Mechanics from Warsaw Technical University and completed postdoctoral work at Kyoto University.
Contents

Acknowledgements ... v

Preface ... xiii

Chapter 1: Introduction ... 1
 1.1 What Is Finite Element Analysis? .. 1
 1.2 What Is the Place of Finite Element Analysis Among Other Tools of Computer-Aided Engineering? .. 2
 1.3 Fields of Application of FEA and Mechanism Analysis; Differences Between Structures and Mechanisms 2
 1.4 Fields of Application of FEA and CFD 4
 1.5 What Is “FEA for Design Engineers”? 4
 1.6 Importance of Hands-On Exercises 5

Chapter 2: From CAD Model to Results of Finite Element Analysis ... 7
 2.1 Formulation of the Mathematical Model 7
 2.2 Selecting Numerical Method to Solve the Mathematical Model .. 10
 2.2.1 Selected Numerical Methods in Computer Aided Engineering .. 10
 2.2.2 Reasons for the Dominance of Finite Element Method .. 11
 2.3 The Finite Element Model .. 12
 2.3.1 Meshing ... 12
 2.3.2 Formulation of Finite-Element Equations 13
 2.3.3 Errors in FEA Results .. 14
 2.4 Verification and Validation of FEA Results 15

Chapter 3: Fundamental Concepts of Finite Element Analysis ... 17
 3.1 Formulation of a Finite Element .. 17
 3.1.1 Closer Look at Finite Element 17
 3.1.2 Requirements to be Satisfied by Displacement Interpolation Functions .. 20
 3.1.3 Artificial Restraints .. 20
 3.2 The Choice of Discretization .. 22
 3.3 Types of Finite Elements ... 23
 3.3.1 Element Dimensionality .. 23
 3.3.2 Element Shape ... 29
 3.3.3 Element Order and Element Type 29
3.3.4 Summary of Commonly Used Elements

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
</tr>
</tbody>
</table>

3.3.5 Element Modeling Capabilities

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
</tr>
</tbody>
</table>

Chapter 4: Controlling Discretization Errors

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>36</td>
</tr>
<tr>
<td>4.2</td>
<td>38</td>
</tr>
<tr>
<td>4.2.1</td>
<td>38</td>
</tr>
<tr>
<td>4.2.2</td>
<td>42</td>
</tr>
<tr>
<td>4.2.3</td>
<td>45</td>
</tr>
<tr>
<td>4.2.4</td>
<td>47</td>
</tr>
<tr>
<td>4.2.5</td>
<td>49</td>
</tr>
<tr>
<td>4.3</td>
<td>49</td>
</tr>
<tr>
<td>4.3.1</td>
<td>50</td>
</tr>
<tr>
<td>4.3.2</td>
<td>50</td>
</tr>
<tr>
<td>4.4</td>
<td>51</td>
</tr>
<tr>
<td>4.4.1</td>
<td>51</td>
</tr>
<tr>
<td>4.4.2</td>
<td>57</td>
</tr>
<tr>
<td>4.5</td>
<td>64</td>
</tr>
<tr>
<td>4.5.1</td>
<td>64</td>
</tr>
<tr>
<td>4.5.2</td>
<td>66</td>
</tr>
<tr>
<td>4.5.3</td>
<td>67</td>
</tr>
</tbody>
</table>

Chapter 5: Finite Element Mesh

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>69</td>
</tr>
<tr>
<td>5.1.1</td>
<td>69</td>
</tr>
<tr>
<td>5.1.2</td>
<td>70</td>
</tr>
<tr>
<td>5.1.3</td>
<td>71</td>
</tr>
<tr>
<td>5.2</td>
<td>74</td>
</tr>
<tr>
<td>5.2.1</td>
<td>74</td>
</tr>
<tr>
<td>5.2.2</td>
<td>74</td>
</tr>
<tr>
<td>5.2.3</td>
<td>76</td>
</tr>
<tr>
<td>5.3</td>
<td>77</td>
</tr>
<tr>
<td>5.3.1</td>
<td>77</td>
</tr>
<tr>
<td>5.3.2</td>
<td>80</td>
</tr>
<tr>
<td>5.3.3</td>
<td>82</td>
</tr>
<tr>
<td>5.3.4</td>
<td>83</td>
</tr>
<tr>
<td>5.4</td>
<td>84</td>
</tr>
<tr>
<td>5.4.1</td>
<td>84</td>
</tr>
<tr>
<td>5.4.2</td>
<td>85</td>
</tr>
</tbody>
</table>

Chapter 6: Modeling Process

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>88</td>
</tr>
<tr>
<td>6.1.1</td>
<td>88</td>
</tr>
<tr>
<td>6.1.2</td>
<td>88</td>
</tr>
</tbody>
</table>
Chapter 6: Nonlinear Static Structural Analysis

6.1 Geometry Preparation .. 89
6.2 Modeling Techniques .. 91
 6.2.1 Mirror Symmetry and Antisymmetry Boundary Conditions 91
 6.2.2 Axial Symmetry .. 96
 6.2.3 Cyclic Symmetry ... 97
 6.2.4 Realignment of Degrees of Freedom 99
6.3 Hands-On Exercises .. 100
 6.3.1 BRACKET02-1 (Figure 6.14) 100
 6.3.2 BRACKET02-2 (Figure 6.15) 101
 6.3.3 BRACKET02-3 (Figure 6.16) 102
 6.3.4 Shaft (Figure 6.17) .. 103
 6.3.5 Pressure Tank (Figure 6.18) 104
 6.3.6 RING (Figure 6.19) ... 105
 6.3.7 Link (Figure 6.20) .. 106

Chapter 7: Nonlinear Static Structural Analysis

7.1 Classification of Different Types of Nonlinearities 109
7.2 Large Displacement Analysis ... 110
7.3 Membrane Stress Stiffening ... 117
7.4 Contact ... 123
7.5 Hands-On Exercises .. 128
 7.5.1 Cantilever Beam (Figure 7.1) 128
 7.5.2 Torsion Shaft (Figure 7.7) 129
 7.5.3 Round Plate (Figure 7.12) 129
 7.5.4 LINK (Figure 7.17) ... 130
 7.5.5 Sliding Support (Figure 7.18) 130
 7.5.6 CLAMP01 (Figure 7.21) 131
 7.5.7 CLAMP02 (Figure 7.26) 131
 7.5.8 Shrink Fit (Figure 7.27) 132

Chapter 8: Nonlinear Material Analysis

8.1 Review of Nonlinear Material Models 133
8.2 Elastic–Perfectly Plastic Material Model 134
8.3 Use of Nonlinear Material to Control Stress Singularity 137
8.4 Other Types of Nonlinearities .. 139
8.5 Hands-On Exercises .. 140
 8.5.1 BRACKET NL (Figure 8.3) 140
 8.5.2 L BRACKET (Figure 8.7) 140
Chapter 9: Modal Analysis

9.1 Differences Between Modal and Static Analysis 143
9.2 Interpretation of Displacement and Stress Results in Modal Analysis ... 144
9.3 Modal Analysis With Rigid Body Modes 145
9.4 Importance of Supports in Modal Analysis 147
9.5 Applications of Modal Analysis ... 148
 9.5.1 Finding Modal Frequencies and Associated Shapes of Vibration ... 148
 9.5.2 Locating “Weak Spots” in Structure 149
 9.5.3 Modal Analysis Provides Input to Vibration Analysis 150
9.6 Prestress Modal Analysis ... 150
9.7 Symmetry and Antisymmetry Boundary Conditions in Modal Analysis .. 152
9.8 Convergence of Modal Frequencies .. 154
9.9 Meshing Consideration for Modal Analysis 155
9.10 Hands-On Exercises .. 155
 9.10.1 Tuning Fork (Figure 9.12) ... 155
 9.10.2 Box (Figure 9.1) .. 156
 9.10.3 Airplane (Figure 9.2) .. 156
 9.10.4 Ball (Figure 9.4) .. 157
 9.10.5 Link (Figure 9.5) .. 157
 9.10.6 Helicopter Blade (Figure 9.7) 158
 9.10.7 Column (Figure 9.8) ... 159
 9.10.8 Bracket (Figure 9.10) .. 159

Chapter 10: Buckling Analysis

10.1 Linear Buckling Analysis ... 162
10.2 Convergence of Results in Linear Buckling Analysis 165
10.3 Nonlinear Buckling Analysis ... 165
10.4 Summary .. 176
10.5 Hands-On Exercises .. 177
 10.5.1 Notched Column—Free End (Figure 10.1) 177
 10.5.2 Notched Column—Sliding End (Figure 10.2) 178
 10.5.3 Button (Figure 10.11) .. 178
 10.5.4 Curved Column (Figure 10.15) 179
 10.5.5 Stand (Figure 10.16) .. 179
 10.5.6 CURVED_SHEET (Figure 10.17) 179

Chapter 11: Vibration Analysis

11.1 Modal Superposition Method .. 181
11.2 Time Response Analysis ... 183
11.3 Frequency Response Analysis .. 186
Contents

11.4 Nonlinear Vibration Analysis ... 190
11.5 Hands-On Exercises .. 193
 11.5.1 Hammer Impulse Load (Figure 11.2) 193
 11.5.2 Hammer Beating (Figure 11.2) 194
 11.5.3 ELBOW_PIPE (Figure 11.7) 194
 11.5.4 Centrifuge (Figure 11.10) 195
 11.5.5 PLANK (Figure 11.13) .. 196

Chapter 12: Thermal Analysis .. 197
12.1 Heat Transfer Induced by Prescribed Temperatures 197
12.2 Heat Transfer Induced by Heat Power and Convection 198
12.3 Heat Transfer by Radiation .. 201
12.4 Modeling Considerations in Thermal Analysis 202
12.5 Challenges in Thermal Analysis 204
12.6 Hand-On Exercises ... 205
 12.6.1 Bracket (Figure 12.1) 205
 12.6.2 Heat Sink (Figure 12.2) 205
 12.6.3 Channel (Figure 12.4) 206
 12.6.4 Space Heater (Figure 12.6) 207

Chapter 13: Implementation of Finite Element Analysis in the Design Process .. 209
13.1 Differences Between CAD and FEA Geometry 209
 13.1.1 Defeaturing .. 210
 13.1.2 Idealization .. 211
 13.1.3 Cleanup .. 213
13.2 Common Meshing Problems ... 214
13.3 Mesh Inadequacy ... 217
13.4 Integration of CAD and FEA Software 218
 13.4.1 Stand-Alone FEA Software 218
 13.4.2 FEA Programs Integrated With CAD 218
 13.4.3 Computer-Aided Engineering Programs 218
13.5 FEA Implementation .. 219
 13.5.1 Positioning of CAD and FEA Activities 219
 13.5.2 Personnel Training ... 220
 13.5.3 FEA Program Selection 222
 13.5.4 Hardware Selection ... 225
 13.5.5 Building Confidence in the FEA 225
 13.5.6 Return-On Investment 226
13.6 FEA Project .. 227
 13.6.1 Major Steps in FEA Project 227
 13.6.2 FEA Report .. 230
 13.6.3 Importance of Documentation and Backups 231
13.6.4 Contracting Out FEA Services 232
13.6.5 Common Errors in the FEA Management 233

Chapter 14: Misconceptions and Frequently Asked Questions 235
 14.1 FEA Quiz .. 235
 14.2 Frequently Asked Questions 239

Chapter 15: FEA Resources .. 251
 References ... 252

Chapter 16: Glossary of Terms 253

Chapter 17: List of Exercises 259

Index ... 261

About the Author ... 267