Preface xiii

Acknowledgments xv

CHAPTER 1

Benefits and Applications of the In-Vehicle Network for Data Acquisition 1

1.1 Overview: Data Goldmine 1

1.2 Focus and Assumptions of This Book 2

1.3 Access to the Data 2

1.4 Normal and Requested Messages 3
 1.4.1 Normal Messages 3
 1.4.2 Requested Messages 3

1.5 Comparing Light- and Heavy-Duty Vehicle Designs 3

1.6 Applications 5

1.7 How to Use This Book 5

References 6

CHAPTER 2

Comparison with Traditional Data Acquisition 7

2.1 Acquiring Data with Added Sensors 7

2.2 In-Vehicle Network Data 8

2.3 Acquiring Parameters from the Network 9

2.4 Complications of Network versus Direct Sensors 9

CHAPTER 3

Binary, Hex, Bits, and Bytes 11

3.1 Introduction to Bits, Binary, and Hexadecimal Conventions 11

3.2 Hexadecimal Designations 12

3.3 Introduction to Bits and Bytes 12

3.4 11 and 29-Bit CAN IDs 12
CHAPTER 6

OBD-II Diagnostic Messages and Test Modes 39

6.1 J1979 and J1979-DA: Electrical/Electronic Systems Diagnostic Test Modes 39

6.1.1 Priority 40

6.1.2 Controller IDs 40

6.2 Test Mode 41

6.2.1 Mode $01: Request Current Powertrain Diagnostic Data 42

6.2.2 Mode $02: Request Powertrain Freeze Frame Data 42

6.2.3 Mode $03/$04: Request/Clear Emission-Related Diagnostic Trouble Code (Confirmed DTCs) 42

6.2.4 Mode $05: Request Oxygen Sensor Monitoring Test Results 42

6.2.5 Mode $06: Request On-Board Monitoring Test Results for Specific Monitored Systems 43

6.2.6 Mode $07: Request Emission-Related Diagnostic Trouble Codes Detected During Current or Last Completed Driving Cycle (Pending DTCs) 43

6.2.7 Mode $08: Request Control of On-Board System, Test, or Component 43

6.2.8 Mode $09: Request Vehicle Information 44

6.2.9 Mode $0A: Request Emission-Related Diagnostic Trouble Codes with Permanent Status 47

6.3 Parameter ID (PIDs) 47

6.3.1 PID $00: Finding Available Parameters 48

6.4 Broadcast vs. Targeted Requests 48

6.5 11- and 29-Bit CAN Message Examples 49

References 51
CHAPTER 7

J1979 OBD-II Data with Mode $01

7.1 Overview

7.2 Mode $01 – Request Current Powertrain Diagnostic Data

7.3 Required OBD-II Mode $01 Parameters
 7.3.1 Required OBD-II, Mode $01 Parameters – Gasoline Engines
 7.3.2 Required OBD-II, Mode $01 Parameters – Diesel Engines

7.4 Sample Rate, Scaling, and Amplitude Resolution for Mode $01 Parameters

7.5 Sample Message Data and Conversion for Test Mode $01
 7.5.1 Example 1 Vehicle Speed ($0D)
 7.5.2 Example 2 Intake Air Temperature ($0F)
 7.5.3 Example 3 RPM ($0C)

7.6 Example OBD Database Editor

References

CHAPTER 8

Mode $06: Request On-Board Monitoring Test Results for Specific Monitored Systems

8.1 Purpose

8.2 Diagnostic Monitor ID (MIDs): Component Identifier

8.3 Test IDs (TIDs)

8.4 Data Format

8.5 Data Display of Mode $06 Data

8.6 Oxygen Sensor

8.7 Supported MIDs

8.8 PID $41: Monitor Status This Driving Cycle

8.9 Mode $06 Serial Monitor

8.10 Mode $06 Parallel Monitor

8.11 Logging Mode $06

8.12 The Missing Mode

References
CHAPTER 9

Enhanced Diagnostics

9.1 Comparing OBD-II to EOBD

9.2 Enhanced OBD Test Modes

9.3 Sources of LD Network Data

9.4 J2190 Enhanced E/E Diagnostic Test Modes

9.5 ISO 14229: Unified Diagnostic Services (UDS)

9.6 ISO 14230: Road Vehicles—Diagnostic Communication over K-Line (DoK-Line)

9.7 ISO 15765 Road Vehicles: Diagnostic Communication over Controller Area Network (DoCAN)

9.7.1 General Information and Use Case Definition

9.7.2 Transport Protocol and Network Layer Services

9.7.3 Implementation of Unified Diagnostic Services (UDS on CAN)

9.7.4 Requirements for Emissions-Related Systems

References

CHAPTER 10

Additional Protocols

10.1 LIN Protocol

10.2 MOST Protocol

10.3 FlexRay Protocol

10.4 Automotive Ethernet

10.4.1 Time-Triggered Ethernet

10.5 CAN FD

10.6 Protocol Speed Summary

10.7 OBD-III

References

CHAPTER 11

Diagnostic Trouble Codes (DTCs)

11.1 Overview

11.2 J1979 OBD-II Fault Codes (Modes $03, $07, $0A)

References
11.3 UDS ISO 14229 EOBD Fault Codes 99
11.4 Comparing HD and LD Standards 100
 11.4.1 Comparing HD and LD Approaches 101
 11.4.2 Comparing LD Test Modes with HD Messages 102
11.5 J1939 Fault Codes 102
11.6 WWH-OBD Fault Codes 103
 11.6.1 Severity (Byte 4 of Request and Byte 5 of Response) 105
 11.6.2 Class of the DTC Severity (Byte 7) 105
 11.6.3 Status (Byte 11) 105
11.7 Clearing Codes 107
 11.7.1 Clearing OBD Codes 107
 11.7.2 Clearing EOBD Codes 107
 11.7.3 Clearing J1939 Trouble Codes 108
References 108

CHAPTER 12

Steps to Acquire LD In-Vehicle Network Data 109
12.1 Overview 109
12.2 Logging OBD Data with a Test Tool 110
12.3 Example OBD Database Editor 110
 12.3.1 Selecting Parameters to Acquire 111
 12.3.2 Sorting by Name, Unit, or PID 111
 12.3.3 Defining the Acquisition Rate and Source Address 112
 12.3.4 Importing Proprietary Messages 112
12.4 Data Logger/Streamer Specifications 113
Reference 114

CHAPTER 13

Applications and Example Data 115
13.1 Overview of OBD Applications 115
13.2 Web-Based Dashboards 115
13.3 Types of Analyses and Displays 116
 13.3.1 Point-by-Point Trip Data 117
13.3.2 Statistical Data
13.3.3 Vehicle Comparison Data
13.3.4 Correlating Controller Data

13.4 Fleet Data
13.4.1 Diagnostics and Alerts
13.4.2 Driver Behavior/Performance/Training
13.4.3 Electronic Logging Device (ELD)

13.5 Diagnosing and Servicing Intermittent Problems
13.5.1 Air Conditioning Intermittent Problem
13.5.2 Transmission Intermittent Problem

13.6 Additional Data Sources
13.6.1 GPS
13.6.2 Geofencing
13.6.3 Telematics and Remote Diagnostics
13.6.4 Adding Sensors to the Vehicle

13.7 Calculated Parameters from In-Vehicle Network Parameters
13.7.1 Vehicle Weight
13.7.2 Triaxial Accelerometer and Road Grade
13.7.3 Fuel Economy

References

CHAPTER 14

Calculating Fuel Economy

14.1 Fuel Economy and Emissions

14.2 Calculating Fuel Economy
14.2.1 Injector Volume
14.2.2 Manifold Air Flow and Air Fuel Ratio
14.2.3 Using Manifold Air Pressure (MAP) and Ideal Gas Law

14.3 Fuel Economy Studies
14.3.1 Conclusions from HEV Testing
14.3.2 Conclusions from Fleet Testing
14.3.3 Conclusions from the Fleet Study

14.4 PEMS from PAMS

References