Contents

Foreword xiii
Acknowledgments xv

SECTION ONE

CHAPTER 1
Introduction

1.1 Overview 1
1.2 Historical Perspective 2
1.3 Structure of the Text 6

CHAPTER 2
Simple Suspension as a Linear Dynamic System

2.1 Introduction 11
2.2 The Simply Suspended Mass and Linear Systems Theory 12
2.3 A Suspended Mass with Damping 18
2.4 Basic Frequency Responses 22
2.5 State Space and Block Diagram Algebra 28
2.6 State Space Realization 33
2.7 First-Order Matrix Differential Equations 35
2.8 Summary 37

CHAPTER 3
The Quarter-Car Model

3.1 Introduction 39
3.2 Representing Reality with the Quarter-Car Model 40
CHAPTER 4
The Pitch Plane Model

4.1 Introduction 65
4.2 Basic Pitch-Plane Model 66
4.3 Pitch Plane-Free Response 69
4.4 Road Inputs to the Pitch-Plane Model 72
4.5 Pitch-Plane Ride Quality and the Olley Ride Criteria 76
4.6 Pitch-Plane Model with Damping 78
4.7 Generalized Pitch-Plane Model and Olley Solution 81
4.8 Three-Axle Vehicle Example 88
4.9 Summary 92

CHAPTER 5
The Roll-Plane Model

5.1 Introduction 95
5.2 Simple Two-Axle Roll-Plane Model 96
5.3 The Roll Mode for a Single Axle 100
5.4 The Roll-Plane Model with Stabilizer Bar 103
5.5 Single-Wheel Inputs 109
5.6 Passenger Car Roll 111
5.7 Generalized Roll-Plane Model 113
5.8 Roll and Handling 113
5.9 Summary 114
Contents

Chapter 6

Active Suspension to Optimize Ride

6.1 Introduction 117
6.2 Inertial Damping 119
6.3 Lotus Modal Control 126
6.4 Modal Inertial Damping 127
6.5 Sprung Mass Acceleration Feedforward 131
6.6 Quarter-Car Optimal Control 132
6.7 Full Vehicle Optimal Control 139
6.8 Modal Inertial Damping and Handling 142
6.9 Summary 144

Section Two

Chapter 7

Handling Basics

7.1 Introduction 149
7.2 Ackermann Steering 150
7.3 Steering Efforts 157
7.4 Slip Angles 165
7.5 Tire Forces 168
7.6 The Conventional Bicycle Model 170
7.7 Summary 175

Chapter 8

Reference Frames

8.1 Introduction 179
8.2 Reference Frames in General 180
8.3 Velocity of a Point Translating in a Rotating Reference Frame 182
8.4 Velocity and Acceleration of a Point in a Translating and Rotating Reference Frame 183
CHAPTER 9
New Conventions

9.1 Introduction 195
9.2 State-of-the-Art Conventions 196
9.3 New Axle Location Convention 200
9.4 New Attack Angle Convention 200
9.5 Summary 204

CHAPTER 10
Two-Axle Yaw-Plane Model

10.1 Introduction 207
10.2 The Two-Axle Vehicle Model 208
10.3 Drift Angle and Yaw Rate Transfer Functions 215
10.4 Ideal Two-Axle Model 218
10.5 Steady-State Analysis 222
10.6 Pole Locations 226
10.7 Summary 230

CHAPTER 11
Rear Axle Steering and Lanekeeping

11.1 Introduction 233
11.2 Vehicle Model with Rear Axle Steering 236
11.3 Determination of Rear Axle Steer Control 241
11.4 Open-Loop Response of Ideal Vehicle 246
11.5 Specified Preview 247
11.6 Determination of Rear Axle Control of Ideal Vehicle 249
11.7 Numerical Results 250
11.8 Theoretical Interpretation of Practical Systems 254
11.9 Summary 255

CHAPTER 12
Two-Axle Vehicles that Roll

12.1 Introduction 259
12.2 Roll Axis Definitions 260
12.3 Acceleration Equations 262
12.4 External Roll Forces on Sprung Mass 265
12.5 Camber Effects 267
12.6 Roll Steer Effects 269
12.7 Differential Equations of Motion with Roll 271
12.8 Roll Steer Compensation 275
12.9 Including Steering Compliance in Understeer 277
12.10 Inclusion of Nonlinear Tires 278
12.11 Summary 278

CHAPTER 13
Three-Axle Vehicle Dynamics

13.1 Introduction 281
13.2 Peculiarities of the Three-Axle Vehicle 282
13.3 The Three-Axle Model 287
13.4 Third Axle Steering 294
13.5 Trajectory Tracking 299
13.6 Summary 301

CHAPTER 14
Generalized Multiaxle Vehicle Dynamics

14.1 Introduction 303
14.2 General Model 304
14.3 An Arbitrarily Steered Axle 310
14.4 All Arbitrary Axles Steered Proportionally 312
14.5 The Multiaxle Vehicle with Roll 314
14.6 Summary 319

CHAPTER 15

Automated Vehicle Architecture from Vehicle Dynamics

15.1 Introduction 321
15.2 Properties of a Typical Three-Axle Commercial Vehicle 323
15.3 Control of Rear Axle 325
15.4 Rear Axle Control for Yaw Rate Equivalence 327
15.5 Vehicle Results 331
15.6 Proposed Three-Axle Vehicle 335
15.7 Summary 337

Afterword 341
Index 343
About the Author 351