Foreword xiii
Preface xv
Acknowledgments xvii
From the Publisher xix
About the Author xx
About the Editors xxii
List of Symbols xxv

CHAPTER 1

Introduction 1

Dawn of the Motor Vehicle Age 1
Introduction to Vehicle Dynamics 5

Fundamental Approach to Modeling 6
 Lumped Mass 6
 Vehicle-Fixed Coordinate System 7
 ISO/SAE Z-up Vehicle-Fixed Coordinate System 8
 Motion Variables 8
 Earth-Fixed Coordinate System 8
 Euler Angles 9
 Forces 9
 Newton’s Second Law 9

Dynamic Axle Loads 10
 Static Loads on Level Ground 11
 Low-Speed Acceleration 11
 Loads on Grades 12
 Climbing a Grade 12
 Road Grade 12
 Composite Mass 13
 Moments of Inertia 13

Example Problems 14
References 18
CHAPTER 2

Acceleration Performance

- Power-Limited Acceleration
 - Engines
 - Powertrain
 - Automatic Transmissions

- Example Problems

- Traction-Limited Acceleration
 - Transverse Weight Shift due to Drive Torque

- Traction Limits
 - Parts of a Differential
 - Differential Rules

- Example Problems

- References

CHAPTER 3

Braking Performance

- Basic Equations
 - Constant Deceleration
 - Deceleration with Wind Resistance
 - Energy/Power

- Braking Forces
 - Rolling Resistance
 - Aerodynamic Drag
 - Driveline Drag
 - Grade

- Brakes
 - Brake Factor

- Tire-Road Friction
 - Velocity
 - Inflation Pressure
 - Vertical Load

- Example Problems

- Federal Requirements for Braking Performance

- Brake Proportioning

- Anti-lock Brake Systems

- Braking Efficiency

- Rear Wheel Lockup

- Pedal Force Gain

- Example Problem

- References
Chapter 4: Road Loads

Aerodynamics
- Mechanics of Air Flow around a Vehicle 68
- Pressure Distribution on a Vehicle 70
- Aerodynamic Forces 73
- Drag Components 74

Aerodynamic Aids
- Bumper Spoilers 78
- Air Dams 78
- Deck Lid Spoilers 78
- Window and Pillar Treatments 78
- Optimization 79

Drag
- Air Density 79
- Drag Coefficient 81

Side Force 83

Lift Force 84

Pitching Moment 85

Yawing Moment 85

Rolling Moment 86

Crosswind Sensitivity 87

Rolling Resistance 90

Factors Affecting Rolling Resistance
- Tire Temperature 91
- Tire Inflation Pressure/Load 91
- Velocity 92
- Tire Material and Design 92
- Tire Slip 94

Typical Coefficients 94

Total Road Loads 96

Fuel Economy Effects 97

Example Problems 97

References 99

Chapter 5: Ride

Excitation Sources
- Road Roughness 104
- Tire/Wheel Assembly 109
- Driveline Excitation 113
- Engine and Transmission 116
CHAPTER 6

Steady-State Cornering

Introduction

Low-Speed Turning

High-Speed Cornering

Tire Cornering Forces

Cornering Equations

Understeer Gradient

Characteristic Speed

Critical Speed

Lateral Acceleration Gain

Yaw Velocity Gain

Sideslip Angle

Static Margin

Suspension Effects on Cornering

Roll Moment Distribution

Camber Change

Roll Steer

Lateral Force Compliance Steer

Aligning Torque

Effect of Tractive Forces on Cornering
CHAPTER 8
The Steering System

Introduction
The Steering Linkages
Steering Geometry Error
 Toe Change
 Roll Steer
Front-Wheel Geometry
Steering System Forces and Moments
 Vertical Force
 Lateral Force
 Tractive Force
 Aligning Torque
 Rolling Resistance and Overturning Moments
Steering System Models
Examples of Steering System Effects
 Steering Ratio
 Understeer
 Braking Stability
Influence of Front-Wheel Drive
 Driveline Torque about the Steer Axis
 Influence of Tractive Force on Tire Cornering Stiffness
 Influence of Tractive Force on Aligning Moment
 Fore/Aft Load Transfer
 Summary of FWD Understeer Influences
Four-Wheel Steer
 Low-Speed Turning
 High-Speed Cornering
References

CHAPTER 9
Rollover
Quasi-Static Rollover of a Rigid Vehicle
Quasi-Static Rollover of a Suspended Vehicle
CHAPTER 10

Tires 275

Tire Construction 276
Size and Load Rating 277
Tire Load Index 278
Terminology and Axis System 279
Mechanics of Force Generation 280
Tractive Properties 281
Vertical Load 283
Inflation Pressure 283
Surface Friction 284
Speed 285
Relevance to Vehicle Performance 285
Cornering Properties 286
Slip Angle 286
Tire Type 289
Load 290
Inflation Pressure 290
Size and Width 290
Tread Design 291
Relevance to Vehicle Performance 291
Camber Thrust 291
Tire Type 292
Load 293
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflation Pressure</td>
<td>293</td>
</tr>
<tr>
<td>Tread Design</td>
<td>294</td>
</tr>
<tr>
<td>Other Factors</td>
<td>294</td>
</tr>
<tr>
<td>Relevance to Vehicle Performance</td>
<td>294</td>
</tr>
<tr>
<td>Aligning Moment</td>
<td>294</td>
</tr>
<tr>
<td>Slip Angle</td>
<td>294</td>
</tr>
<tr>
<td>Path Curvature</td>
<td>296</td>
</tr>
<tr>
<td>Relevance to Vehicle Performance</td>
<td>296</td>
</tr>
<tr>
<td>Combined Braking and Cornering</td>
<td>297</td>
</tr>
<tr>
<td>Friction Circle</td>
<td>297</td>
</tr>
<tr>
<td>Variables</td>
<td>299</td>
</tr>
<tr>
<td>Relevance to Vehicle Performance</td>
<td>299</td>
</tr>
<tr>
<td>Conicity and Ply Steer</td>
<td>300</td>
</tr>
<tr>
<td>Relevance to Vehicle Performance</td>
<td>301</td>
</tr>
<tr>
<td>Durability Forces</td>
<td>302</td>
</tr>
<tr>
<td>Tire Vibrations</td>
<td>303</td>
</tr>
<tr>
<td>References</td>
<td>306</td>
</tr>
<tr>
<td>Appendix A: (R) Vehicle Dynamics Terminology</td>
<td>307</td>
</tr>
<tr>
<td>Appendix B: SAE J6a Ride and Vibration Data Manual</td>
<td>395</td>
</tr>
<tr>
<td>Appendix C: Ride Index Structure and Development Methodology</td>
<td>437</td>
</tr>
<tr>
<td>Index</td>
<td>473</td>
</tr>
</tbody>
</table>