Table of Contents

Preface ix
Abbreviation xiii
Nomenclature xvii

Chapter 1

Introduction 1
1.1 Recent Progress and Outlook of Automotive Engines 2
1.1.1 Achievement in Engine Performance and Emissions 2
1.1.2 Future Development of IC Engines 5
1.2 Roles of Multidimensional Engine Simulation 9
References 14

Chapter 2

Combustion Basis of Internal Combustion Engines 19
2.1 Thermodynamic Analysis 19
2.2 Mixture Formation and Combustion in Spark-Ignition Gasoline Engines 28
2.3 Combustion in Diesel Engines 37
2.4 Advanced Concepts of Low-Temperature Combustion 41
References 49

Chapter 3

Mathematical Description of Reactive Flow with Sprays 53
3.1 Governing and Spray Equations 53
3.1.1 Governing Equations of Gas Phase 53
3.1.2 Spray Equation 56
Table of Contents

5.2 **Spray Atomization** 126
 - 5.2.1 Numerical Treatment of Fuel Injection 126
 - 5.2.2 Jet Atomization 127
 - 5.2.3 Sheet Atomization 133

5.3 **Drop Dynamics** 140
 - 5.3.1 Secondary Breakup 140
 - 5.3.2 Collision and Coalescence 142
 - 5.3.3 Drag, Deformation, and Turbulent Dispersion 145

5.4 **Evaporation** 147
 - 5.4.1 Single-Component Evaporation 148
 - 5.4.2 Multi-Component Evaporation 152

5.5 **Spray Wall Impingement** 156
 - 5.5.1 Spray Impingement Regimes 158
 - 5.5.2 Post Impingement Outcomes 163
 - 5.5.3 Wall Film Hydrodynamics and Heat Transfer 174

References 185

CHAPTER 6

Combustion and Pollutant Emissions 193

6.1 **Overview** 193

6.2 **Characteristic-Time Combustion Model** 196
 - 6.2.1 Model Formulation 196
 - 6.2.2 Diesel Engine Combustion Simulation 198

6.3 **Flamelet Methods** 203
 - 6.3.1 Level Set G-Equation Model 203
 - 6.3.2 SI Engine Combustion Simulation 206

6.4 **Sub-Grid Direct Chemistry Approach** 209
 - 6.4.1 Description of the Method 209
 - 6.4.2 HCCI Combustion Simulation 213

6.5 **Chemical Reaction Mechanism and Its Reduction** 216

6.6 **Ignition Models** 221
 - 6.6.1 Spark Ignition 221
 - 6.6.2 Compression Ignition 222

6.7 **Models of NO\textsubscript{x} and Soot Emissions** 223
 - 6.7.1 NO\textsubscript{x} Emission Models 224
 - 6.7.2 Soot Emission Models 225
 - 6.7.3 Model Predictions 227

References 230
CHAPTER 7
Optimization of Direct-Injection Gasoline Engines

7.1 Advanced Combustion Development Methodology
7.1.1 Modeling-Driven Approach
7.1.2 Overview of Optimization Algorithms
7.2 CFD Codes and Software for IC Engines
7.3 Direct-Injection Spray Characterization
7.4 Mixing in Wall-Guided DI Systems
7.4.1 Homogeneous Mixture Formation
7.4.1.1 In-Cylinder Mixing Phenomena
7.4.1.2 Mixture Homogeneity and Improvement
7.4.2 Stratified-Charge Formation
7.5 Soot and Hydrocarbon Emissions by Wall-Wettings
7.6 Mixing in Spray-Guided and Turbocharged DI Systems
References

CHAPTER 8
Optimization of Diesel and Alternative Fuel Engines

8.1 Direct-Injection Diesel Engines
8.1.1 Emissions Reduction by Multiple Injections
8.1.1.1 NO Reduction Mechanism
8.1.1.2 Soot Reduction Mechanism
8.1.2 Geometry of Helical Port and Combustion Chamber
8.1.3 Emissions at Cold Start
8.2 Alternative Fuel Engines
8.2.1 Spark-Ignition Natural Gas Engines
8.2.2 RCCI in Diesel–Natural Gas Dual-Fuel Combustion
8.2.3 Combustion and NO_x Emissions of Biodiesel Fuels
References

Index
About the Author