Contents

Preface

CHAPTER 1

Introduction and a Brief History of Electric Aircraft

1.1. Background 1
1.2. Electrification Trend 2
1.3. Early Electric Flights 3
1.4. The Solar Years 4
1.5. All-Electric and Hybrid-Electric 6
1.6. Way Forward 10
1.7. Book Structure 10
References 11

CHAPTER 2

The Electric Aircraft Paradigm

2.1. Scope and Stakes 13
2.2. Route to Electric Aircraft 14
2.3. Electrical Chain Breakdown 19
2.4. Technology Stakes 21
2.5. Conclusion 24
References 25
CHAPTER 3
Electrification of Aircraft Systems—Part I: Power Generation and Distribution, Electrical Networks and Architectures

3.1. Conventional Aircraft and Engine Systems
3.2. More Electric Engine (MEE) Systems
3.3. More Electric Aircraft (MEA) Systems
3.3.1. Electrical Power Generation and Distribution

References

CHAPTER 4
Electrification of Aircraft Systems—Part II: Replacement of Pneumatics, Enabling Technologies

4.1. Pneumatic Power Generation
4.2. Environmental Control System
4.2.1. Conventional ECS
4.2.2. Electric ECS
4.3. Wing Ice Protection System
4.4. Enabling Technologies
4.4.1. Motors
4.4.2. Power Electronics
4.5. Conclusions

References

CHAPTER 5
Electrification of Aircraft Systems—Part III: Shift from Hydraulic to Electric-Powered Actuation

5.1. Actuation Needs for Power Transmission and Control
5.2. General Considerations for PbW Actuation
5.2.1. From Power by Pipe Towards Hydraulic-Less PbW
5.2.2. PbW Actuator Interface to Electric Power Networks
5.2.3. Power Control in PbW Actuators
5.2.4. Reliability
5.2.5. Integration and Mutualization in PbW Actuation

References
5.3. Local Generation of Hydraulic Power for Actuation 100
5.4. Electrohydrostatic Actuators 101
 5.4.1. Functional and Architectural View 101
 5.4.2. In-Service EHAs 102
 5.4.3. Main Issues for Extensive Use of EHAs 104
5.5. Electromechanical Actuators 105
 5.5.1. Functional and Architectural Aspects 105
 5.5.2. In-Service EMAs 108
 5.5.3. Imperfections of Technological Realization 110
 5.5.4. Maturation of EMAs 111
5.6. Challenges with Generalization of PbW Actuation 113
 5.6.1. Important Considerations for Use of PbW Actuation 113
 5.6.2. Evolution Towards All-PbW Actuation 115

References 116
 SAE- and ISO-Related Documents 116
Acronyms 116

CHAPTER 6

Propulsion Options for the Electric Aircraft 119

6.1. Conventional Engines 119
 6.1.1. Gas Turbine 120
 6.1.2. Turboprop Engine 120
 6.1.3. Turbofan Engine 121
 6.1.4. Efficiency 125
 6.1.5. Noise 126
6.2. Bleedless Engines for the More Electric Aircraft 127
6.3. Propulsion Systems for the Electric Aircraft 128
 6.3.1. Enabling Architectures 129
 6.3.1.1. Electric Propulsion 130
 6.3.1.2. Hybrid-Electric Propulsion 132
 6.3.1.3. Distributed Electric Propulsion (DEP) 138
 6.3.2. Enabling Technologies 139
 6.3.2.1. Motors 139
 6.3.2.2. Motor Controls 141
 6.3.2.3. Motor and Motor Control Demonstrators 141
 6.3.2.4. Materials 143
 6.3.2.5. Superconducting Electrical Systems 143
 6.3.2.6. Fuel Cells 144
 6.3.2.7. Batteries 146
6.4. Conclusion 148
References 149

CHAPTER 7
Aircraft Applications—Part I: Electric Propulsion, Electric Taxiing 153
7.1. Battery Electric Propulsion—Small General Aviation 153
7.2. Urban Air Transportation 158
7.3. Fuel Cell Electric Propulsion—Commuter Aircraft 167
7.4. Battery Electric Propulsion—Regional Aircraft 168
7.5. Battery Electric Propulsion—Short-Range Aircraft 169
7.6. Electric Taxiing—Short-Range Aircraft 169
 7.6.1. Operation 171
 7.6.2. System Configurations and Performance 172
 7.6.3. Nose Landing Gear Actuation 172
 7.6.4. Main Landing Gear Actuation 174
 7.6.5. Business Models 178
7.7. Conclusions 178
References 178

CHAPTER 8
Aircraft Applications—Part II: Hybrid-Electric Propulsion 181
8.1. Fuel Cell Parallel HEP: Commuter Aircraft 181
8.2. Battery Series HEP: Commuter Aircraft 182
8.3. Battery Parallel HEP: Short-Range Aircraft 184
8.4. Battery Series HEP: Short-Range Aircraft 186
8.5. Battery Distributed HEP: Commuter Aircraft 189
8.6. Battery Distributed HEP: Regional Aircraft 190
8.7. Distributed HEP: Short-Range Aircraft 192
 8.7.1. No-Battery Partial Turboelectric DHEP 192
 8.7.2. Fuel Cell Partial Turboelectric DHEP 193
 8.7.3. No-Battery Total Turboelectric DHEP 193
 8.7.4. Battery Total Turboelectric DHEP 194
8.8. SMES Total Turboelectric DHEP: Long-Range Aircraft 198
CHAPTER 9
Maintainability and Operational Overview

9.1. Ground Operations
 9.1.1. Maintenance—State of the Art
 9.1.1.1. A Check
 9.1.1.2. B Check
 9.1.1.3. C Check
 9.1.1.4. 3C Check
 9.1.1.5. D Check
 9.1.1.2. Maintenance Prediction—Condition Monitoring
 9.1.1.2.1. Condition-Based Maintenance (CBM) and Predictive Maintenance (PdM)
 9.1.2. Changes for More Electric Aircraft
 9.1.3. Changes for an Electric Aircraft
 9.1.4. Airport Operations
 9.1.4.1. Infrastructure
 9.1.4.2. Aircraft Handling
 9.1.4.3. Refueling/Recharging
 9.1.4.4. Pushback/Taxiing
 9.2. In-Flight Operations
 9.2.1. Flight Deck Operations
 9.2.1.1. Complex Configurations/Licenses
 9.2.2. Single Pilot Operations
 9.2.3. Autonomous Flight
 9.2.4. Pilots as Drone Operators
 9.2.5. Cabin Operations

References
10.5. Short-Range Aircraft \hspace{1cm} 237
10.6. Long-Range Aircraft \hspace{1cm} 247
10.7. Regional Aircraft \hspace{1cm} 252
10.8. General Aviation \hspace{1cm} 253
10.9. Cost of Ownership \hspace{1cm} 257
10.10. Environmental Footprint \hspace{1cm} 258
References \hspace{1cm} 262

Conclusion \hspace{1cm} 265
Index \hspace{1cm} 267
About the Authors \hspace{1cm} 277