The annual X-Hab Academic Innovation Challenge is designed to engage students in Science, Technology, Engineering and Math (STEM). The National Aeronautics and Space Administration (NASA) identifies necessary technologies for deep space missions, and invites universities to develop prototypes that will help shape future space missions.

The University of Wisconsin-Milwaukee was selected to execute a project entitled Design of a Carbon-Fiber/Fused Deposition Modeling Spacecraft Structural Fabrication System. It was sponsored by NASA’s In-Space Manufacturing Project, based at the Marshall Space Flight Center.

The team studied 3-D printing technology applications for creating and recycling tools on long-term space missions.

The result is a must-read series of papers exploring the issues surrounding 3-D printing in a space environment, now published by SAE International as Studies into Additive Manufacturing for In-Space Manufacturing.

About the Editors

Rani Elhajjar

Rani Elhajjar is an associate professor at the Civil & Environmental Engineering and the Materials Science and Engineering Departments at the University of Wisconsin in Milwaukee. He earned his doctoral degree from the Georgia Institute of Technology, and his MS degree from the University of Texas at Austin. He was a structural analyst on the Boeing 787 Dreamliner program where he was the lead engineer on the effects of composite manufacturing defects program for the 787-fuselage structure.

Dr. Elhajjar was selected as a Fulbright Scholar to the Università degli Studi di Trento in Italy in 2016 at the Department of Industrial Engineering for a teaching and research appointment.

Tracy R. Gill

Tracy works for NASA at the Kennedy Space Center as its deputy chief technologist, also managing the X-Hab Academic Innovation Challenge for NASA. He holds a BS in electrical engineering and an MS in aerospace and mechanical systems from the University of Florida, an MS in space systems from Florida Tech, and is a graduate of the International Space University Summer Session Program. He is also an adjunct professor for the International Space University.

Through Spacelab and ISS Utilization payload processing activities, Tracy has worked extensively with employees and contractors from other NASA field centers, universities, and international engineering teams from the European Space Agency (ESA), Italy, Germany, France, Canada, and Japan.
Table of Contents

Preface ... vii

Introduction ... ix

Chapter 1: Extrusion and 3D Printing of Recycled ABS Filament for Use in FDM – Lessons Learned ... 1
 Aleksey Yermakov, Brandon Hitter, Tressa Norden, and Anthony Demeuse

Chapter 2: Mechanical Properties of 3D-Printed Recycled ABS Materials for FDM Applications ... 11
 Jon Wolgamott, Alexandra Slay, Keith Anderson, and Gabriella Santarosa

Chapter 3: Effects of Orientation Angle on the Mechanical Properties of FDM Parts ... 19
 Jon Wolgamott, Alexandra Slay, and Keith Anderson

Chapter 4: Finite Element Modeling of 3D Printed Materials Using Unit Cell Methods .. 27
 Seyedmohammad S. Shams and Daniella M. Perazzo

Chapter 5: Design of a Carbon-Fiber Reinforced Fused Deposition Modeling Modular Wrench Tool ... 37
 Alex Francis, Ben Huberty, Nicole Przybyla, and Alex Seidcheck

Chapter 6: Carbon Fiber Reinforced 3D Printed Ratchet: Feasibility and Application in Deep Space Missions ... 53
 Bryan Sinkovec and John Emholtz

Chapter 7: High Performance 3D Printed Carbon-fiber Reinforced Crowfoot Adaptive Tool ... 63
 Kelly Scott and Brett Sweeney

Chapter 8: A Recyclable ABS/Carbon-Fiber Reinforced Locking Pliers Tool Using Fused Deposition Modeling 3D Printing Technique 71
 Joel Klopstein and Bill Merschdorf

About the Authors ... 79

About the Editors ... 81