Fuel cell electric vehicles (FCEVs) powered by proton-exchange membrane fuel cells (PEFC) and fueled by hydrogen offer the promise of zero emissions with excellent driving range of 300-400 miles and fast refueling times of less than five minutes; two major advantages over battery electric vehicles (BEVs). FCEVs face several remaining major challenges in order to achieve widespread and rapid commercialization. Many of the challenges, especially those from an FCEV system and subsystem cost and performance perspective are addressed in this book. Chapter topics include:

- impact of FCEV commercialization
- new hydrogen infrastructure cost comparisons
- stack bipolar plate corrosion protective coatings
- onboard chemical hydride storage
- new hydrogen sensors
- simulation of onboard hydrogen storage strategies
- vehicle air supply systems
- FCEV energy management
- optimization of hybrid FCEV powertrains

About the Editor
David Wood III is Senior Staff Scientist, Roll-to-Roll Manufacturing Team Lead, Fuel Cell Technologies Program Manager, and UT Bredesen Center Faculty Member at Oak Ridge National Laboratory (ORNL) researching novel electrode architectures, advanced processing methods, manufacturing science, and materials characterization for lithium ion batteries and low-temperature fuel cells. He manages programs and financial operations on hydrogen infrastructure issues, polymer electrolyte fuel cells, and lithium ion batteries. He has been employed at ORNL since 2009.

His industrial and academic career began in 1995. He was employed by General Motors Corporation and SGL Carbon Group in applied research and development related to automotive and stationary proton-exchange fuel cell (PEFC) technology. Later work at Los Alamos National Laboratory (LANL) and Cabot Corporation, focused on elucidation of key chemical degradation mechanisms, development of accelerated testing methods, and component development.
Contents

Preface .. xi

Chapter 1: Disruption as a Strategy:
Technology Leadership Brief ... 1
Drivers of Change ... 1
Obstacles ... 1
Disruptive Effects of an Automaker Forcing Infrastructure 2
Results ... 3
Summary and Conclusions ... 4
References ... 5
Acknowledgments ... 5

Chapter 2: Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles 7
Methods .. 9
Number of Hydrogen Stations by Size .. 11
Number of EVSE Stations by Type .. 11
Hydrogen Station Costs ... 13
EVSE Station Costs ... 14
Results ... 15
Total Capital Costs per City and Capital Costs per Mile Traveled 15
Total Fuel Costs per Vehicle Mile .. 19
Discussion: Variability of Results .. 20
Conclusion .. 24
Acknowledgments ... 24
References ... 24
Appendix ... 26
EVSE Station Cost ... 26
A1 Cost Estimates for Level 1 Residential EVSE 26
A2 Cost Estimates for Level 2 Residential EVSE 28
A3 Cost Estimates for Level 2 Commercial 30
A4 Cost Estimates for DC Fast Charge (DCFC) 32

Vehicle Model: HSSIM ... 84
Fuel Cell Model .. 88
Model Framework ... 89
Model Application .. 91
Conclusions ... 96
References .. 97
Acknowledgments .. 98

Chapter 7: Air Supply System for Automotive Fuel Cell Application

Fuel Cell System .. 100
Air Supply System for Fuel Cell
 Previous Generation Air Supply System 104
 Current Generation Air Supply System 107
 Future Generation Air Supply System 110
 Comparison of the Three Generations of Air Supply Systems .. 113
Summary and Conclusions ... 114
References .. 115
Acknowledgments .. 115

Chapter 8: Hybrid Electric System for a Hydrogen Fuel Cell Vehicle and Its Energy Management

Description of the Vehicle .. 118
Dimensioning of the Powertrain 119
Dimensioning of the Sources 120
Fuel Cell and Battery Models 121
 Fuel Cell ... 121
 Battery .. 122
Energy Management .. 123
 Global Optimization .. 124
 Global Optimization Results 126
 Local Optimization ... 128
 Local Optimization Results 130
Conclusion ... 132
References .. 132
Chapter 9: Control System for Sensing the Differential Pressure between Air and Hydrogen in a Polymer Electrolyte Fuel Cell (PEFC)

Contents

System Configuration [9-2] ... 136
Cathode .. 137
Anode ... 137
Modeling of Air Supply System 138
 Modeling of Air Supply System [9-2], [9-3], [9-4] 138
 Flow Characteristics around Orifice [9-4] 139
 Linearization of Mass Flow Rate around Orifice [9-4] . 140
 Pressure Dynamics [9-4] 140
Derivation of Linear Model of Air Supply System [9-2], [9-3] 140
Design of Continuous Sliding Mode Control System [9-2], [9-3] 143
Preparation for Configuring Hydrogen/Air Pressure Control System [9-2] ... 144
Transfer Function from Reference Value to Plant Output in a 2 DOF Control System Using a Minimal Order Observer ... 144
Application to a Sliding Mode Servo Control System with a Minimal Order Observer ... 145
Configuration of Differential Pressure Control System 146
 The Case of Increasing Pressure [9-2] 147
 The Case of Air Pressure Displays Higher Response under a Condition of Decreasing Pressure [9-2] 148
 The Case of Hydrogen Pressure Displays Higher Response under a Condition of Decreasing Pressure [9-2] 149
Configuration of the System for Controlling the Hydrogen-Air Pressure Difference within a Specified Range 149
Experimental and Simulation Results ... 150
Conclusion .. 150
References .. 150

Chapter 10: Multi-Objective Optimization of Fuel Cell Hybrid Vehicle Powertrain Design—Cost and Energy

Methodology .. 154
Case Study .. 155
PHEV and HEV Single-Objective Optimization 159
PHEV and HEV Multi-Objective Optimization 161
Contents

Results and Discussion ...164
 HEV-FC. ...164
 PHEV-FC ...167
Summary and Conclusions. ...172
References ..172
Acknowledgments ...174
Appendix ...175

About the Editor ..177