Development of higher-voltage electrical systems in vehicles has been slowly progressing over the past few decades. However, tightening vehicle efficiency and emissions regulations and increasing demand for onboard electrical power means that higher voltages, in the form of supplemental 48 V subsystems, may soon be nearing production as the most cost-effective way to meet regulations. The displacement of high-wattage loads to more efficient 48 V networks is expected to be the next step in the development of a new generation of mild hybrid vehicles. In addition to improved fuel economy and reduced emissions, 48 V systems could potentially save costs on new electrical features and help better address the emerging needs of future drivers. Challenges to 48 V system implementation remain, leading to discussions by experts from leading car makers and suppliers on the need for an international 48 V standard. Initial steps toward a proposed standard have already been taken. So the consensus of global forecasts suggests that 48 V mild hybrids will soon come to dominate the market. Compared with 200-600 V full hybrid and battery electric vehicles, the lower-voltage approach avoids the need for high-cost safety features and large battery packs.

About the Author

Kevin is currently the Editorial Director for SAE International's Magazines, Books, Videos, and Intellectual Property in Warrendale PA. Prior to that he served various editorial roles with SAE Magazines including Editor of Automotive Engineering and Off-Highway Engineering. His industry experience includes roles as first Project Engineer for testing and then Product Engineer for seating and other trim systems at Lear Corp. in Southfield MI.
Table of Contents

Introduction ... ix

Chapter 1 Fuel Consumption and Emissions Effects in\nPassenger Car Diesel Engines through the Use of a Belt Starter Generator .. 1

- Drivetrain Architecture .. 2
- Methods ... 4
 - Thermodynamic Optimisation .. 4
 - Automated Cycle Driving .. 4
 - Hybrid Operating Strategy .. 7
- Results and Discussion .. 14
- Conclusions ... 19
- References ... 21

Chapter 2 Requirements and Protection within a 48V Automotive Wiring System 23

- Weight Saving Issues and Topology of a Multi-Voltage Wiring System .. 24
- Operating Safety for the 48V Wiring System .. 25
- Protection Concepts for the Different Arc Types ... 27
- Conclusions ... 30

Chapter 3 Mixed Voltages and Aluminum Conductors: Assessing New Electrical Technologies 31

- Integrating Flow for 48V System Components and Aluminum Wires .. 32
 - Build 48V Components into a 12V Vehicle System .. 32
 - Verification of a Mixed Voltage System ... 34
 - Replacement of Copper with Aluminum Wires ... 35
 - Examine the Results of all Recommended Changes ... 36
- Summary .. 37
- References ... 37
Results..73
Defining Metrics and Targets for Microhybrid..73
 Energy Density..74
 Power Density..75
Combining Fuel Economy and Volume ...76
Limiting Constraints for Electrode Sizing...78
 Fundamental Limitation of Charge Acceptance78
 Customizing Electrodes for Intended Life ..79
Varying Conditions Over Battery Life ...79
Varying Vehicle-Level Requirements Over Battery Life80
Optimizing Electrodes for Microhybrid ...82
 Customizing Electrodes for Cell Capacity ..82
 Effects due to Motor/Generator Size ...84
 Customizing Electrodes for Drive Cycles ..84
Discussion ...86
 Analysis of the Wh_{recov}/L Metric ..86
 Applicability of WH_{recov}/L Metric ...86
 Variants of the Wh_{recov}/L Metric ...87
 Impacts of Vehicle Requirements ..87
 Definition of Battery Life ..87
 Vehicle Architecture Changes ..88
 Drive Cycle Impacts ...89
 Summary and Conclusions ..89
 Impact of Quantitative Optimization ...89
 Other Vehicle Applications ..89
References ..90

Chapter 7 Application of 48 Volt for Mild Hybrid Vehicles
and High Power Loads ..93
Characteristics and Requirements of the 48V E/E System94
Failure Modes in the 14V/48V E/E System ...95
 Short to Ground ..95
 Loss of Common Ground ...96
 Voltage Short Circuit ..96
 Broken Wire ...97
Recommendations for 48V E/E System design ..100
 Battery Box ...100
 Power Distribution Boxes ...100
 Pre-Fuse Boxes ...100
 Bused Electrical Centers ...101
Chapter 8 Advantages of a 48 Volt Belt Starter Generator in an Ultra-Light Vehicle Powertrain

CULT - Cars Ultra-Light Technology ...106
Hybrid Approach - 12 V BSG ..107
 BSG (12 V) Hybrid Configuration ..107
 Validation Process ..108
 CO₂ Saving Potentials and Comfort ...109
Hybrid Approach - 48 V BSG ...112
 Introduction of 48 V Technology ..112
 BSG (48 V) Hybrid Configuration ..113
 Electric Driving Potential ...115
 Energy Management ...118
 CO₂ Saving Potentials ...121
 48 V Plug-In Concept ...123
Summary ..123
References ...124
Acknowledgments ..125
About the Editor ...127