Topics: Advanced Technologies
The advent of digital computers and the availability of ever cheaper and faster micro processors have brought a tremendous amount of control system applications to the automotive industry in the last two decades. From engine and transmission systems, to virtually all chassis subsystems (brakes, suspensions, and steering), some level of computer control is present. Control systems theory is also being applied to comfort systems such as climate control and safety systems such as cruise control or collision mitigation systems.
This seminar begins by introducing the highly mathematical field of control systems focusing on what the classical control system tools do and how they can be applied to automotive systems. Dynamic systems, time/frequency responses, and stability margins are presented in an easy to understand format. Utilizing Matlab and Simulink, students will learn how simple computer models are generated. Other fundamental techniques in control design such as PID and lead-lag compensators will be presented as well as the basics of embedded control systems. During this interactive seminar, attendees will utilize case studies to develop a simple control design for a closed loop system. And, with the aid of a simple positioning control experiment, students will learn the major components and issues found in many automotive control applications today.
By attending this seminar, you will be able to:
This introductory course is designed for individuals with little or no background in control systems. Engineers, managers, and technical managers with backgrounds in systems, mechanical, electrical, or industrial engineering who work with vehicle chassis (suspension/brakes/steering), powertrains, comfort systems, vehicle dynamics, sensors/actuators, and diagnostics will find the seminar beneficial. Test engineers and technicians, patent attorneys, and business executives may also find this course valuable.
An undergraduate engineering degree or a strong technical background is highly recommended. Basic knowledge of college algebra, college physics, and a familiarity with vehicle systems is required.
"A great, concise course that covers the topics effectively."
William Fox
Manager Controls Group
Vanner, Inc.
"Great seminar to acquire practical understanding of control systems. The material was delivered in such a way that even an engineer out of school for 20 years could understand!"
Tim Drotar
Senior Engineer
Ford Motor Company
You must complete all course contact hours and successfully pass the learning assessment to obtain CEUs.