Topics: Chassis, Air Frame, Vehicle Dynamics
Take notes! Take the wheel! There is no better place to gain an appreciation for vehicle dynamics than from the driver’s seat. Spend three, intense days with a world-renowned vehicle dynamics engineer and SAE Master Instructor, his team of experienced industry engineers, and the BMW-trained professional driving instructors. They will guide you as you work your way through 12 classroom modules learning how and why vehicles go, stop and turn. Each classroom module is immediately followed by an engaging driving exercise on BMW’s private test track. Topics include threshold braking, braking stability, transient response, understeer and oversteer, anti-lock braking systems, electronic stability control, and much more. Simply stated, there is no other seminar in the world quite like this!
While a variety of new engineering methods are becoming available to assist in creating optimal vehicle designs, subjective evaluation of vehicle dynamics is still required to deliver desired braking, handling, and acceleration attributes. In order to better prepare today’s engineer for this task, this course offers modules devoted to twelve key fundamental principles associated with longitudinal and lateral vehicle dynamics. Each focused classroom session is paired with an on-track exercise to immediately reinforce these concepts with a dedicated behind-the-wheel driving session, effectively illustrating these principles in the real world.
This course, in partnership with the BMW Performance Driving Centers, is the leader in the industry; training automotive engineers as well as the training the trainers at leading engineering firms worldwide.
LOCATIONS: https://bmwperformancecenter.com/locations
This course has been approved by the Accreditation Commission for Traffic Accident Reconstruction (ACTAR) for 24 Continuing Education Units (CEUs). Upon completion of this seminar, accredited re-constructionists should mail a copy of their course certificate and the $5 student CEU fee to ACTAR, PO Box 1493, North Platte, NE 69103.
By attending this seminar, you will be able to:
This course has been developed for engineers and technical personnel involved in all fields related to the design or development of vehicle dynamics, vehicle braking systems, powertrain systems, chassis systems, or suspension systems. In addition, this course can be valuable to those with component design responsibilities in brake, chassis, suspension, or tire disciplines who desire a fundamental background in vehicle dynamics with a practical driving linkage.
While not required, potential attendees should have an undergraduate engineering degree or a strong technical background. As a minimum, a basic knowledge of college algebra, college physics, and a familiarity with vehicle brake and suspension systems
"This seminar allows a better evaluation, from a practical stand point, of complete vehicles or sub-assemblies with respect to vehicle dynamics and handling."
Mircea Gradu
Chief Engineer - Automotive
The Timken Company
"You will never have a full understanding of vehicle dynamics without this course as a base. While the screeching tires and smoke add to the effect, the experience "sticks" in your head."
Shad Tisdale
Research Engineer - Tire Mechanics
Cooper Tire & Rubber Company
"The class is a very good mix of classroom time and in-vehicle time and is the most fun class I've taken at SAE. It is ear-grinning fun while learning."
George Soodoo
Chief, Vehicle Dynamics Division
U.S. DOT/NHTSA
"Excellent to (finally) get to combine theory with practice in the same seminar."
Magnus Lahti
Systems Engineer
Mercedes-Benz R&D North America
"My overall understanding of vehicle dynamics has dramatically improved. I can now more confidently relate what I feel as a driver to what the vehicle is actually doing. Exactly what I came here for.
Robin Warner
Systems Calibration Engineer
TRW Automotive
"Learn something - do it. Learn some more - do it. Can't ask for a better instructor."
Michael Scholz
Senior Analysis Specialist
BMW Manufacturing Corp. LLC
You must complete all course contact hours and successfully pass the learning assessment to obtain CEUs.
Please be advised that this course involves one or more of the following: driving and/or riding in a vehicle; participating in a vehicle demonstration; and/or taking part in an offsite tour using outside transportation. You will be required to sign a waiver on-site and produce a valid driver's license from your state/country of residence..
James Walker, Jr. is currently a Principal Engineer specializing in motor vehicle crash reconstruction and chassis, brake, and electronic brake control systems at Carr Engineering, Inc. His prior professional experience includes vehicle dynamics and brake control system development, design, release, and application engineering at Kelsey-Hayes, Saturn Corporation, General Motors, Bosch, Ford Motor Company, and Delphi. Mr. Walker created scR motorsports consulting in 1997, and subsequently competed in seven years of SCCA Club Racing in the Showroom Stock and Improved Touring categories. Through scR motorsports, he has been actively serving as an industry advisor to Kettering University in the fields of brake system design and brake control systems. Since 2001, he has served as a brake control system consultant for StopTech, a manufacturer of high-performance racing brake systems.
In addition to providing freelance material to multiple automotive publications focusing on chassis and brake technology, Mr. Walker is the author of High-Performance Brake Systems: Design, Selection, and Installation. In 2005, he was presented with the SAE Forest R. McFarland Award for distinction in professional development and education, and in 2010 was designated as an SAE Master Instructor. He obtained his B.S.M.E. in 1994 from GMI Engineering & Management Institute
Driving Instructors
Ed Bedner is a senior principal engineer in the field of vehicle dynamics control systems. His professional experiences are in the design and application of active safety systems, including brake controls, steering controls, driver assistance and autonomous systems at General Motors, Delphi, Autoliv, and Qualcomm. Ed has been responsible for the development of algorithms related to the estimation and control of vehicle motion, such as electronic stability control, rollover prevention, adaptive cruise control, and lane-tracking functions. He holds 14 patents and is the author of 3 technical publications. Ed has extensive experience in vehicle handling test methods and measurements, and he is a certified driver at multiple proving grounds and winter test sites. Ed has been a co-instructor for SAE’s Applied Vehicle Dynamics seminar since 2006.
Deric Frisch has worked in the automotive industry for 30 years and holds degrees in Automotive Engineering and Engineering Technology from MCC and Lawrence Technological University. In 1996-1997 he led the Monroe Community College Formula SAE design team with a focus on frame and suspension design. He has been involved with various vehicle development projects while working at Roush Technologies and Faurecia. Deric has been involved with motorsports since 1991 and has competed in various events around the U.S. with the SCCA and World Karting Association. Since 1993 he has been a performance driving instructor with the SCCA and several automotive manufacturers. He has also been a voluntary instructor for A World in Motion (SAE Foundation program) within the Detroit city school system which focuses on STEM principals related to vehicle design. In 2017 he was appointed as an Ambassador for the BMW Car Club of America Foundation with a concentration on further developing the Street Survival teen driving program. He has been a co-instructor for the SAE Applied Vehicle Dynamics seminars since 2018.