Browse Learn C0626

Introduction to Hybrid and Electric Vehicle Battery Systems C0626


Driven by the need for lower emissions, better fuel economy and higher efficiency, hybrid vehicles are appearing in many different configurations on today's roadways. While the powertrain components such as the drive motor, motor controller and cooling system are somewhat familiar to the automotive industry, the battery systems are a relatively unfamiliar aspect. This seminar will introduce participants to the concepts of hybrid vehicles, their missions and the role of batteries in fulfilling those requirements. Battery topics including limitations, trends in hybrid development, customer wants and needs, battery system development timelines, comparison of electrochemistries and safety will be examined. Current offerings, cost factors, pack design considerations and testing will also be reviewed.

Students will have an opportunity to perform a battery pack analysis exercise using a real world application and are requested to bring a calculator to class.


Learning Objectives
By attending this seminar, you will be able to:
  • Capture customer wants and expectations of the battery system
  • Identify factors that drive power and energy requirements
  • Determine test program structure
  • Compare and contrast the newest relevant battery technologies
  • Calculate estimates of electric range and quantify the assumptions
  • Critically assess media claims of new battery discoveries

Who Should Attend
This seminar is primarily intended for vehicle systems engineers, battery system integration engineers, testing engineers, electrical engineers and thermal management engineers recently assigned to their roles or returning to hybrid or electric vehicle programs. It will also be beneficial to those involved in the specification, design, development, testing and planning of hybrid vehicle programs. Product planners and program managers will find the overview aspects helpful.

Prerequisites
Material presented will be practical in nature with basic mathematics used to describe quantitative measures. An undergraduate degree in electrical or electromechanical engineering will assist in gaining maximum benefit from the material presented. Experience or training in battery electrochemistry is helpful, but not essential.
DAY ONE
  • Terminology, Definitions and Conventions
  • Brief Review of the Hybrid Market
    • Market drivers and expectations
    • Market influences
    • Competing technologies
    • Customer expectations
  • Review of Common Vehicle Product Offerings (battery descriptions, power, technology, size, architecture)
  • Fundamentals
    • Fossil fuel vs. hybrid vs. electric
    • Source ragone plot
    • Efficiencies, weights
    • Cost of fuel (fossil vs. electrons)
  • Role of Battery
    • ICE vs. electric systems
    • Energy vs. power
    • Expectations over vehicle lifetime
  • Product Liability / FMEA
  • Battery Development Cycle
    • You don't know what you don't know!
    • Why does it take so long and cost so much?
  • Cost Factors
    • Scope of product: system vs. cells vs. sticks
    • $/kW vs. $kWh
  • System Considerations
  • Electrochemistry Selection
  • Safety
    • Advance planning for safety tests
    • Thermal runaway
    • String configuration (series, parallel)
  • Range Estimation (hybrid vs. electric)
DAY TWO
  • Real-life Battery Analysis Exercise (using a contemporary vehicle as an example)
  • Battery Pack Design Considerations
  • Failure Modes
    • Wear-out
    • Power and energy degradation
    • High resistance / open circuit
    • Controller / signal malfunction
  • Vehicle Trends
    • Plug-in hybrid
    • Battery electric
    • Demanding applications
    • Fuel cell hybrids
  • Battery Trends
  • Battery Warranty
  • Battery Recycling

Registration for the web seminar (live, online) is available on a per-person basis, similar to purchasing a seat in a classroom. The fee includes one connection to WebEx training center, using a PC with internet access and VoIP or a telephone,* and access to a secure course in the SAE Learning Center for presentations, supplemental materials, assignments, and learning assessment. To enjoy a more personalized experience, use of a webcam is encouraged.

*Global toll-free telephone numbers are provided for many countries outside the U.S., but are limited to those on the WebEx call-in toll-free number list. Check here to see if your country has a global call-in toll free telephone number for this web seminar. If your country is not listed, you may still connect using the US/Canada Call-in toll number or VoIP. 

Although WebEx will automatically launch when you join the web seminar, you are encouraged to test your setup in advance of the course start date. Click here, then follow the onscreen instructions.

Erik Spek

Mr. Spek is Chief Engineer for TÜV SÜD Canada, a member of the global TÜV SÜD third party testing services organization for cell and battery manufacturers, vehicle OEMs and utility grid users of energy storage systems. He is also a consultant in the field of energy storage systems focusing on applications, verification testing, cell and battery production facilities safety and sodium ion battery development. Mr. Spek is co-holder of a patent for next generation sodium metal chloride architecture for low cost and very high energy density. He has authored articles on Weibull statistics for battery life and BEV range modeling and has been active in the battery industry since 1984. Mr. Spek is a member of SAE International and is a Certified Manufacturing Engineer with SME. He received an M.A.Sc. from the University of Waterloo and is a registered Professional Engineer in Ontario, Canada.

Hotel & Travel Information

Fees: $1415.00
SAE Members: $1274.00 - $1274.00

1.3 CEUs
You must complete all course contact hours and successfully pass the learning assessment to obtain CEUs.

If paying by a credit card, click the Register button above. If paying by any other method or for general inquiries, please contact SAE Customer Service 1-877-606-7323 (724-776-4970 outside the U.S. and Canada) or at CustomerService@sae.org.

Duration: 2 Days
November 23-24, 2020 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan

Corporate Learning Solutions

Private training your team needs – delivered to your location.

Request Information »
X