Topics: Advanced Technologies
Active Safety, Advanced Driver Assistance Systems (ADAS) are now being introduced to the marketplace as they serve as key enablers for anticipated autonomous driving systems. Automatic Emergency Braking (AEB) is one ADAS application which is either in the marketplace presently or under development as nearly all automakers have pledged to offer this technology by the year 2022. This one-day course is designed to provide an overview of the typical ADAS AEB system from multiple perspectives. A technical overview of the development cycle processes specific to AEB, including system level requirements and design architecture will be presented as well as design considerations for AEB from a functional safety (ISO‐26262) perspective. A general overview of algorithm concepts for the various AEB subsystems will be demonstrated followed by a review of AEB system test and validation methods. Finally, discussion is facilitated toward understanding customer perception and acceptance of AEB at present. The participant should obtain a fundamental understanding of design principles and functional composition for a typical AEB system.
By attending this seminar, you will be able to:
This course is designed for engineers and managers within related professions who are looking for an in-depth technical overview of Automatic Emergency Braking systems.
This course can be viewed as a subsequent application of material introduced in either SAE course C1603 - Introduction to Highly Automated Vehicles or C0315 - Introduction to Brake Control Systems. Either course would be an optional suggested prerequisite, however, an engineering background or specific interest in ADAS topics is most important.
You must complete all course contact hours and successfully pass the learning assessment to obtain CEUs.
Eldon Leaphart is currently a Principal Engineer with Carr Engineering Inc. in Houston, Texas. In this position, his responsibilities include performing investigations to determine causes, conditions, and circumstances of defect allegations related to all forms of embedded system design. Since 1988, Mr. Leaphart has worked in the area of chassis system development on both controlled suspension and controlled brake product lines, previously with GM, Delphi Corporation and BWI Group Inc. During this tenure, he held various engineering roles in the areas of algorithm, failsafe, diagnostics, test, embedded systems software development and engineering management. Mr. Leaphart has authored several technical publications, is the recipient of two GM Boss Kettering awards and named on several patents related to electronic brake controls. He is a member of the ISO TC22/SC32/WG16 on Functional Safety for ISO 26262. Mr. Leaphart is a current member of SAE International and holds BSEE and MSEE degrees from The Ohio State University.