Browse Publications Books R-135

Designing Cost-Efficient Mechanisms R-135

A successful engineer and entrepreneur shares his secrets for producing consistently superior designs at substantial cost savings. Minimum constraint design (MinCD) is a new systematic design strategy that yields major cost reductions and greatly improves the reliability of manufactured mechanisms. For the first time, this practical reference provides the "how-to-do-it" information you need to put this powerful design tool to work right away -- no matter what your level of training or experience. Based upon the author's extensive experience in product design, this timely book clearly explains the advantages of MinCD and tells you how to create better, more cost-efficient product designs using readily available commercial components. Packed with original ideas, design tips, helpful examples, and references - including directories of component vendors - this unique blend of practical and theoretical knowledge will revolutionize the way you work. Contents include: Part 1 - Minimum Constraint Design (MinCD), Semi-MinCD, and Redundant Constraint Design (RedCD) General Description Degrees of Constraint Kinds of Constraint Beneficial Non-MinCD Part 2 - Designing with Commercial Components General Discussion Rotary Motion Linear Motion Power Other Components Part 3 - Topics in Design Engineering Designing with Uncommon Manufacturing Processes Manfacturing Engineering Optimum Level of Mechanization and Automation Robots Robot Grippers Selecting Power Forms Backlash Hype Prod Deterioration Electrical and Mechanical Technologies: Competition and Cooperation References and Bibliography Reviews


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 20% off list price.
Login to see discount.
We also recommend:

Prognostics for Aerospace Propulsion Systems


View Details


CAE Design and Failure Analysis of Automotive Composites

View Details


Hybrid Two-Phase Mechanical / Capillary Pumped Loop for High-Capacity Heat Transport


View Details