Browse Publications Technical Papers 1999-01-0505
1999-03-01

Characteristics of Mixture Formation in a Direct Injection SI Engine with Optimized In-Cylinder Swirl Air Motion 1999-01-0505

This paper presents a study of mixture formation in the combustion chamber of a direct-injection SI engine. In-cylinder flow measurement was conducted using laser Doppler velocimetry (LDV) and particle image velocimetry (PIV), and visualization of fuel vapor behavior was done using laser-induced fluorescence (LIF). Further, fast response flame ionization detector (FID) was used to measure the hydrocarbon (HC) concentrations in the vicinity of the spark plug. Thereby mixture concentrations in the vicinity of the spark plug, within the mixture distribution observed using LIF, were quantified. Results revealed that an upward flow forms near the center of the cylinder in the latter half of the compression stroke and goes from the piston crown toward the cylinder head. This upward flow is caused by the synergistic effect of the swirl motion generated in the cylinder and the cylindrical bowl provided in the piston crown eccentrically to the central axis of the cylinder. It was confirmed that the fuel was initially trapped and vaporized in the piston bowl, then transported as a vapor cloud by the upward flow to the spark plug, thereby forming charge stratification. Performance experiments were conducted to study the ranges of fuel injection and ignition timing necessary for achieving stable stratified charge combustion. Comparisons of the data obtained with LIF visualization results and FID measurements revealed the conditions most desirable for achieving stable stratified charge combustion.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

An Experimental Study of a Gasoline HCCI Engine Using the Blow-Down Super Charge System

2009-01-0496

View Details

TECHNICAL PAPER

Knocking Phenomena in a Rapid Compression and Expansion Machine

920064

View Details

TECHNICAL PAPER

The Interaction Between Fuel Chemicals and HCCI Combustion Characteristics Under Heated Intake Air Conditions

2006-01-0207

View Details

X