Browse Publications Technical Papers 1999-01-0557
1999-03-01

Fluid Dynamic Modeling of the Gas Flow with Chemical Specie Transport through the Exhaust Manifold of a Four Cylinder SI Engine 1999-01-0557

The paper describes the 1-D fluid dynamic modeling of unsteady flows with chemical specie tracking in the ducts of a four-cylinder s.i. automotive engine, to predict the composition of the exhaust gas reaching the catalyst inlet. A comprehensive simulation model, based on classical and innovative numerical techniques for the solution of the governing equations, has been developed. The non-traditional shock-capturing CE-SE (Conservation Element-Solution Element) method has been extended to deal with the propagation of chemical species. A comparison of the MacCormack method plus FCT or TVD algorithms with the CE-SE method has pointed out the superiority of the latter scheme in the propagation of contact discontinuities. A realistic composition of the exhaust products in the cylinder, evaluated by a two-zone combustion model including emission sub-models, has been imposed at the opening of the exhaust valve, considering the effect of short-circuit of air during valve overlap. The fluid dynamic code has been applied to investigate the transport of the resulting chemical species along the exhaust manifold, towards the catalyst. A detailed 1-D model of the catalytic converter has been adopted, considering the distributed and concentrated pressure losses in the system.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.
X