Browse Publications Technical Papers 1999-01-1182
1999-03-01

Application of Computational Mesh Optimization Techniques to Heavy Duty Diesel Intake Port Modeling 1999-01-1182

Multidimensional modeling of in-cylinder processes has traditionally relied upon comparison with experimentally determined gross quantities, such as swirl ratio or valve discharge coefficient. Recent experimental studies have focused on accurate in-cylinder measurement of quantities such as velocity fields, species concentration distributions and distributions or turbulent kinetic energy. Since the most important engine design parameters, including filling efficiency, flame stability and pollutant formation depend on the local flow field, the ability to accurately predict these details is a key requirement for successful application of computational fluid dynamics techniques to engine design. One key barrier to accurately resolving local flow details has been the difficulty involved with creating a computational mesh which provides reasonable geometric fidelity and significant resolution of gradients of flow quantities without being so large that it is impractical for use with commonly available engineering computing resources. In this work, a procedure is outlined for producing a computational mesh for a multi-valve intake port and cylinder geometry. Techniques by which the mesh may be subsequently refined based upon the solution itself are also demonstrated. The relative success of the various computational approaches is evaluated through comparison with experimentally obtained local velocity and turbulence distribution data.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Modelling the Effect of Plenum-Runner Interface Geometry on the Flow Through an Inlet System

2000-01-0569

View Details

TECHNICAL PAPER

On CFD and Transient Flow in Vehicle Aerodynamics

2000-01-0873

View Details

X