Browse Publications Technical Papers 1999-01-2531

Power Generation and Storage Technology Selection for an Optimal Spacecraft System Design 1999-01-2531

Optimal power generation and storage technology suites must be selected based on the overall spacecraft mission and hardware design to insure a minimum system cost. Several new technologies in solar generation (high efficiency multi-junction GaAs-based cells, concentrator arrays, thin film cells, etc.) offer increased performance and/or reduced system-level cost. The savings at the array level often benefit the overall system performance in terms of drag, mass, inertia, and propellant loading. In addition, battery technologies often impact the spacecraft thermal control system and overall dry mass. This paper discusses the design algorithms implemented and executed at The Aerospace Corporation to determine optimal power subsystem suites as a function of spacecraft design and total system cost. The analysis includes ballistic coefficient, disturbance torque, station keeping, and temperature control requirements and links these parameters to design impacts in the propulsion, attitude determination and control, and thermal subsystems. In addition, the algorithms include roll-ups for mass and power and most importantly system cost, including launch. This type of analysis is essential for selecting power system components and determining optimal spacecraft design to minimize mass and/or cost as a function of mission performance parameters, and must be continually revisited as new technologies emerge to determine their best applications.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Transient Thermal Simulation of Apollo Spacecraft and ECS


View Details


Mathematical Modeling of Multiple Evaporator / Multiple Condenser Loop Heat Pipes and Test Data Verification


View Details


Hybrid Two-Phase Mechanical / Capillary Pumped Loop for High-Capacity Heat Transport


View Details