Browse Publications Technical Papers 1999-01-5621
1999-10-19

Multidisciplinary Design Optimization of a Transonic Commercial Transport with a Strut-Braced Wing 1999-01-5621

This paper details the multidisciplinary design optimization (MDO) of a strut-braced wing aircraft and its benefits relative to the cantilever wing configuration. The multidisciplinary design team is subdivided into aerodynamics, structures, aeroelasticity and synthesis of the various disciplines. The aerodynamic analysis consists of simple models for induced drag, wave drag, parasite drag and interference drag. The interference drag model is based on detailed computational fluid dynamics (CFD) analyses of various wing-strut intersection flows. The wing structural weight is partially calculated using a newly developed wing bending material weight routine that accounts for the special nature of strut-braced wings. The remaining components of the aircraft weight are calculated using a combination of NASA’s Flight Optimization System (FLOPS) and Lockheed Martin Aeronautical System formulas. The strut-braced wing and cantilever wing configurations are optimized using Design Optimization Tools (DOT). Offline NASTRAN aerolasticity analysis preliminary results indicate that the flutter speed is higher than the design requirement.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 43% off list price.
Login to see discount.
Special Offer: Purchase more aerospace standards and aerospace material specifications and save! AeroPaks off a customized subscription plan that lets you pay for just the documents that you need, when you need them.
X