Browse Publications Technical Papers 2000-01-0179

Driver Abilities in Closed Course Testing 2000-01-0179

The most frequently cited papers on driver abilities are somewhat dated. This paper reports on the abilities of a large sample of drivers as they negotiated a closed cone-marked course using modern vehicles. The steering wheel position, brake line pressure, and throttle application were monitored, along with vehicle chassis accelerations.
The objective of this paper is to report on the physical inputs utilized by operators, and compare gender-specific and vehicle-specific results. Willingness limits and g-g diagram results are presented. Results of this testing show that typical steering wheel rates in a modern vehicle are higher than earlier reported values, brake pedal forces utilized are significantly lower than those of which people are physically capable, only approximately half of all drivers utilized sufficient pedal force to lock the wheels, a significant portion of drivers never utilized wide-open-throttle, and the willingness limits for the two vehicles were virtually identical, despite variations in vehicle capabilities.
There is a commonly held perception among law-enforcement drivers that traditional rear-wheel-drive cars are best suited to their performance-driving needs. However, the average and standard deviation of the front-wheel-drive group's elapsed time through the course were smaller than those of the rear-wheel-drive group, suggesting that traditional rear-wheel-drive vehicles require more skill to operate in near-limit conditions.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

A Braking Force Distribution Strategy in Integrated Braking System Based on Wear Control and Hitch Force Control


View Details


Systematic Brake Development Process and Optimized Robust Design of Front Axle Kinematics in Order to Reduce Oscillation Sensitivity


View Details


An Experimental and Theoretical Study on the Vehicle Brake Judder


View Details