Browse Publications Technical Papers 2000-01-0356
2000-03-06

An Analytical Tire Model for Vehicle Simulation in Normal Driving Conditions 2000-01-0356

In the simulation of the dynamic response of a vehicle, the accuracy of the predictions strongly depends on the tire properties. Since the physics of tire force generation is highly nonlinear and complex, semi-empirical models are used, which are mathematically curve fitted to experimental data. Although this approach yields realistic tire behavior, it requires many experimental coefficients.
Even though tire forces generated by a real tire are nonlinear, there is a linear region where the slip and slip angle are low. Most normal driving is done in this region. This paper will present a new analytical tire model capable of simulating pure cornering, pure braking, and combined braking/cornering in this region. The dynamic properties of the tire are analytically derived as functions of the slip, slip angle, normal force, and road friction coefficient. For the combined braking/cornering condition the unique function which effectively determines the tradeoff between longitudinal force and cornering force is derived. The longitudinal and cornering forces in the proposed tire model well match those of empirical models in the normal driving range. The proposed tire model can be analytically linearized about a given operating point, thus it can be very useful for designing controllers and observers for use in vehicle dynamic control systems. This paper develops this tire model and compares it with an empirical model.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

An Empirical Tire Model for Non-Steady State Side Slip Properties

2003-01-3414

View Details

TECHNICAL PAPER

A Simulation System for Vehicle Dynamics Control

910240

View Details

TECHNICAL PAPER

Development of Effective Bicycle Model for Wide Ranges of Vehicle Operations

2014-01-0841

View Details

X