Browse Publications Technical Papers 2000-01-2057
2000-06-19

Analysis of Mixture Formation Process with a Swirl-Type Injector 2000-01-2057

A swirl-type injector is commonly used for the gasoline direct injection IC engines. To control and optimize the engine combustion, analyses of mixture formation process inside the cylinder are quite important. In this study, an evaluation of a DDM (Discrete Droplet Model) including breakup and evaporation sub-models has been made by making comparisons between the calculation and measurement. In the calculation, two kinds of initial conditions were tested; one was from empirical expressions and the other was from calculated results using a VOF (Volume Of Fluid) model that had a feature to examine the free fluid surface of a liquid fuel spray. As a result, the authors have found that a DDM can basically explain the spray formation process. However, much further modification of the breakup model and initial conditions would be required to have a quantitatively good agreement between the calculation and measurement

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.

Due to current capacity constraints, printed versions of our publications - including standards, technical papers, EDGE Reports, scholarly journal articles, books, and paint chips - may experience shipping delays of up to four to six weeks. We apologize for any inconvenience.
We also recommend:
TECHNICAL PAPER

Honeycomb Auto Exhaust Catalysts Containing Copper Chromite and Palladium

760143

View Details

TECHNICAL PAPER

3D Spray Measurement System for High Density Fields Using Laser Holography

2002-01-0739

View Details

TECHNICAL PAPER

Impingement Behavior of Fuel Droplets on Oil Film

2015-01-0913

View Details

X