Browse Publications Technical Papers 2000-01-3099

Finding Ultimate Limits of Performance for Hybrid Electric Vehicles 2000-01-3099

Hybrid electric vehicles are seen as a solution to improving fuel economy and reducing pollution emissions from automobiles. By recovering kinetic energy during braking and optimizing the engine operation to reduce fuel consumption and emissions, a hybrid vehicle can outperform a traditional vehicle. In designing a hybrid vehicle, the task of finding optimal component sizes and an appropriate control strategy is key to achieving maximum fuel economy.
In this paper we introduce the application of convex optimization to hybrid vehicle optimization. This technique allows analysis of the propulsion system's capabilities independent of any specific control law. To illustrate this, we pose the problem of finding optimal engine operation in a pure series hybrid vehicle over a fixed drive cycle subject to a number of practical constraints including:
  • nonlinear fuel/power maps
  • min and max battery charge
  • battery efficiency
  • nonlinear vehicle dynamics and losses
  • drive train efficiency
  • engine slew rate limits
We formulate the problem of optimizing fuel efficiency as a nonlinear convex optimization problem. This convex problem is then accurately approximated as a large linear program. As a result, we compute the globally minimum fuel consumption over the given drive cycle. This optimal solution is the lower limit of fuel consumption that any control law can achieve for the given drive cycle and vehicle. In fact, this result provides a means to evaluate a realizable control law's performance.
We carry out a practical example using a spark ignition engine with lead acid (PbA) batteries. We close by discussing a number of extensions that can be done to improve the accuracy and versatility of these methods. Among these extensions are improvements in accuracy, optimization of emissions and extensions to other hybrid vehicle architectures.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Investigation of Hybrid Drive Trains for Railway Vehicles


View Details


Hybrid Vehicle for Fuel Economy


View Details


Analysis and Simulation of Conventional Transit Bus Energy Loss and Hybrid Transit Bus Energy Saving


View Details