Browse Publications Technical Papers 2001-01-0259

Eliminating Maps from Engine Fueling Control Algorithms 2001-01-0259

Presented in this paper is an adaptive steady state fueling control system for spark ignition-internal combustion engines. Since the fueling control system is model based, the engine maps currently used in engine fueling control are eliminated. This proposed fueling control system is modular and can therefore accommodate changes in the engine sensor set such as replacing the mass-air flow sensor with a manifold air pressure sensor. The fueling algorithm can operate with either a switching type O2 sensor or a linear O2 sensor. The steady state fueling compensation utilizes a feedforward controller which determines the necessary fuel pulsewidth after a throttle transient to achieve stoichiometry. This feedforward controller is comprised of two nonlinear models capturing the steady state characteristics of the fueling process. These models are identified from an input-output testing procedure where the inputs are fuel pulsewidth and mass-air flow signal and the output is a lambda signal. These models are adapted via a recursive least squares method to accommodate product variability, engine aging, and changes in the operating environment. This proposed fueling control system is demonstrated on a Ford 4.6L V-8 fuel injected engine maintained at the Purdue Engine Research Facility/Engine Control Technology laboratory.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

High Pressure Thick Film Monolithic Sensors


View Details


Wavelet Filtering of Cylinder Pressure Signal for Improved Polytropic Exponents, Reduced Variation in Heat Release Calculations and Improved Prediction of Motoring Pressure & Temperature


View Details


Optimal Pressure Based Detection of Compressor Instabilities Using the Hurst Exponent


View Details