The University of Texas Center for Electro-mechanics (UT-CEM) has been developing active suspension technology for high-speed off-road applications since 1993. The UT-CEM system uses controlled electromechanical actuators to control vehicle dynamics with passive springs to support vehicle static weight. The program is currently in a full vehicle demonstration phase on a military high mobility multipurpose wheeled vehicle (HMMWV). This paper presents detailed test results for this demonstration vehicle, compared to the conventional passive HMMWV, in a series of tests conducted by the U.S. Army at Yuma Proving Grounds. Extensive data in plotted form are discussed, including accelerometer readings from 6 vehicle mounted accelerometers, corner displacement transducers, and current and power plots for the actuators. Results indicate significant mobility improvements offered by the UT-CEM system, including over five-fold reductions in driver absorbed power (a measure of driver vertical acceleration loading) and a more than 100% increase in cross country ride-limiting speed.