Browse Publications Technical Papers 2001-01-1246
2001-03-05

Multi-Zone DI Diesel Spray Combustion Model for Cycle Simulation Studies of Engine Performance and Emissions 2001-01-1246

A quasi-dimensional, multi-zone, direct injection (DI) diesel combustion model has been developed and implemented in a full cycle simulation of a turbocharged engine. The combustion model accounts for transient fuel spray evolution, fuel-air mixing, ignition, combustion and NO and soot pollutant formation. In the model, the fuel spray is divided into a number of zones, which are treated as open systems. While mass and energy equations are solved for each zone, a simplified momentum conservation equation is used to calculate the amount of air entrained into each zone. Details of the DI spray, combustion model and its implementation into the cycle simulation of Assanis and Heywood [1] are described in this paper. The model is validated with experimental data obtained in a constant volume chamber and engines. First, predictions of spray penetration and spray angle are validated against measurements in a pressurized constant volume chamber. Subsequently, predictions of heat release rate, as well as NO and soot emissions are compared with experimental data obtained from representative heavy-duty, turbocharged diesel engines. It is demonstrated that the model can predict the rate of heat release and engine performance with high fidelity. However, additional effort is required to enhance the fidelity of NO and soot predictions across a wide range of operating conditions.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Models for Combustion and Formation of Nitric Oxide and Soot in Direct Injection Diesel Engines

760129

View Details

TECHNICAL PAPER

Optimising Engine Performance and Emissions Using Bayesian Techniques

971612

View Details

TECHNICAL PAPER

Analysis of the Aftertreatment Sizing for Pre-Turbo DPF and DOC Exhaust Line Configurations

2014-01-1498

View Details

X