Browse Publications Technical Papers 2001-01-2358

Life Support Equivalent System Mass Predictions for the Mars Dual Lander Reference Mission 2001-01-2358

The Systems Integration, Modeling and Analysis (SIMA) element1 of the National Aeronautics and Space Administration (NASA) Advanced Life Support (ALS) Project conducts on-going studies to determine the most efficient means of achieving a human mission to Mars. Life support for the astronauts constitutes an extremely important part of the mission and will undoubtedly add significant mass, power, volume, cooling and crew time requirements to the mission. Equivalent system mass (ESM) is the sum of these five parameters on an equivalent mass basis and can be used to identify potential ways to reduce the overall cost of the mission.
SIMA has documented several reference missions in enough detail to allow quantitative studies to identify optimum ALS architectures. The Mars Dual Lander Mission, under consideration by the Johnson Space Center (JSC) Exploration Office, is one of those missions. This mission requires three vehicles: a Mars Transit Vehicle that carries the crew between Earth and Mars orbit, a Mars Descent/Ascent Lander that carries the crew between Mars orbit and the Martian Surface, and a Surface Habitat Lander that houses the crew for a 600-day stay on the surface of Mars.
The life support system includes six subsystems, Air, Biomass, Food, Thermal, Waste, and Water, as well as several important external interfaces. Although an optimum life support system configuration for this mission is not yet evident, one “straw man” architecture has been analyzed using the ESM method. This identifies which subsystems have the greatest “cost” for this mission and helps determine where technology investments will be the most effective at reducing this cost.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 40% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.