Browse Publications Technical Papers 2002-01-0216

Mathematical Formulation for Hydrodynamic Stability of Fluidic Jets 2002-01-0216


The fluid spray exits the nozzle in the form of a stream, which decays rapidly to ligaments that break up into droplets. All these transitions occur in a very short time and region. This work provides a fundamental analysis of the jet stability in general form, but it is devoted particularly to fluidic jets. Such jets exist in different industrial applications; automobile windshield washer and diesel fuel injector sprays are good examples.
A computational analysis is developed that predicts the break up distance and velocity of the fluidic jets, which is one of the important factors that helps in prediction of the spray pattern and droplet strike location. Thus reduces number of the required prototypes and saves time and cost. Also, a parametric study is conducted to analyze the effect the jet breakup on the spray trajectory.
In this investigation, a successful approach is developed that combines an algebraic model, which predicts maximum exit velocity of fluidic devices, with the initial-problem of quasi-stationary stream and the linear theory of the hydrodynamic stability. The computational results have been correlated successfully versus the experimental tests.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 17% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.