Browse Publications Technical Papers 2002-01-1677
2002-05-06

Effects of Engine Operating Conditions on Catalytic Converter Temperature in an SI Engine 2002-01-1677

To meet stringent emission standards, a considerable amount of development work is necessary to ensure suitable efficiency and durability of catalyst systems. The main challenge is to reduce the engine cold-start emissions. Close-coupled catalyst (CCC) provides fast light-off time by utilizing the energy in the exhaust gas. However, if some malfunction occurred during engine operation and the catalyst temperature exceeds 1050°C, the catalytic converter becomes deactivated and shows poor conversion efficiency.
Close-coupled catalyst temperature was investigated under various engine operating conditions. All of the experiments were conducted with a 1.0L SI engine at 1500-4000 rpm. The engine was operated at no load to full load conditions. Exhaust gas temperature and catalyst temperature were measured as a function of lambda value (0.8-1.2), ignition timing (BTDC 30°-ATDC 30°) and misfire rates (0-28%). It was found that ignition retard and misfire can result in the deactivation of the catalytic converter, which eventually leads the drastic thermal aging of the converter. Significant reduction in light-off time can be achieved with proper control of ignition retard and misfire, which can reduce cold-start HC emissions as well. Exhaust gas temperature was also predicted according to engine speed, air/fuel ratio and ignition timing to complement the experimental results.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Study on Low NOX Emission Control Using Newly Developed Lean NOX Catalyst for Diesel Engines

2007-01-0239

View Details

TECHNICAL PAPER

Ambient Temperature Light-off Aftertreatment System for Meeting ULEV Emission Standards

980421

View Details

TECHNICAL PAPER

A Novel 1D Co-Simulation Framework for the Prediction of Tailpipe Emissions under Different IC Engine Operating Conditions

2019-24-0147

View Details

X