Browse Publications Technical Papers 2002-01-1745
2002-05-06

Gasoline HCCI Modeling: An Engine Cycle Simulation Code with a Multi-Zone Combustion Model 2002-01-1745

For the application to Gasoline Homogenous Charge Compression Ignition (HCCI) modeling, a multi-zone model was developed. For this purpose, the detailed-chemistry code SENKIN from the CHEMKIN library was modified. In a previous paper, the authors explained how piston motion and a heat transfer model were implemented in the SENKIN code to make it applicable to engine modeling. The single-zone model developed was successfully implemented in the engine cycle simulation code AVL BOOST™.
A multi-zone model, including a crevice volume, a quench layer and multiple core zones, is introduced here. A temperature distribution specified over these zones gives this model a wider range of application than the single-zone model, since fuel efficiency, emissions and heat release can now be predicted more accurately. The SENKIN-BOOST multi-zone model predictions are compared with experimental data. This demonstrates that the model can accurately predict fuel consumption, emissions and IMEP for a wide range of experimental operating conditions. An examination of the general trends predicted by the model (e.g. calculated fuel consumption, residual gas fraction and emissions as a function of IMEP) indicates that the proposed multi-zone model is a promising advance in Gasoline HCCI computer modeling.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Gasoline HCCI Modeling: Computer Program Combining Detailed Chemistry and Gas Exchange Processes

2001-01-3614

View Details

TECHNICAL PAPER

Diesel Fuel Injector Design Optimization Using CFD and 1D Simulation

2012-01-1970

View Details

TECHNICAL PAPER

Optimization of Inlet Port Performance on Emission Compliance of Naturally Aspirated DI Diesel Engine

2005-26-010

View Details

X