Browse Publications Technical Papers 2002-01-2673
2002-10-21

Techniques for Predicting Combustion Chamber Deposits in a Direct Injection Diesel Engine 2002-01-2673

The present study investigated three techniques for predicting combustion chamber deposit formation in a direct injection diesel engine. One non-intrusive technique, based on the factorial experimental design method was used to develop an empirical model. This model predicts deposit weight as a function of time, but is dependent on engine type, type of lubricating oil, and engine operating parameters. Two intrusive techniques were also investigated for predicting deposit formation: a fast response thermocouple and a deposit conductivity probe, both being located within the combustion chamber. It was shown that the fast response thermocouple technique provided a correlation between in-cylinder peak temperature phase lag and deposit thickness. The conductivity probe correlated electrical conductivity with deposit growth. As well, the waveform characteristics from the conductivity probe showed the potential to predict the physical structure of the deposits.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of “Temperature Swing” Insulation to Direct-Injection Diesel Engines

2016-01-0661

View Details

TECHNICAL PAPER

Understanding Soot Mediated Oil Thickening Part 6: Base Oil Effects

982665

View Details

TECHNICAL PAPER

Measurement of Trace Metal Composition in Diesel Engine Particulate and its Potential for Determining Oil Consumption: ICPMS (Inductively Coupled Plasma Mass Spectrometer) and ATOFMS (Aerosol Time of Flight Mass Spectrometer) Measurements

2003-01-0076

View Details

X