Browse Publications Technical Papers 2002-01-2736
2002-10-21

Modeling of Engine Cyclic Variation by a Thermodynamic Model 2002-01-2736

Kantor model showing that prior-cycle effects resulting from exhaust gas residuals are a significant factor in cyclic variability of combustion in IC engines is due to a number of model assumptions that misrepresent the thermodynamic process experienced by the mixture of fresh combustible gas plus exhaust residual in important ways. In particular we show that exhaust blowdown process and variable exhaust residual gas mass fraction, neglected in the Kantor model, significantly reduce cyclic variability. However, unburned fuel not considered in the Kantor model apparently aggravates cyclic variability. These three factors cancel each other resulting in cyclic variation appeased. Using modified Kantor models, we examine the effects of all major engine operating parameters on mean and fluctuating exhaust residual temperature and indicated work. No significant cyclic variability is predicted for realistic ranges of these parameters. Only for extremely unrealistic ranges of model parameters cyclic variation reluctantly shows up. Moreover, even using the Kantor model, cyclic variability is predicted only for rather extreme, somewhat contrived choices of the model parameters.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

The Development of a Thermo-Oxidation Engine Oil Simulation Test (TEOST)

932837

View Details

TECHNICAL PAPER

CFD Investigation of Wall Wetting in a GDI Engine under Low Temperature Cranking Operations

2009-01-0704

View Details

TECHNICAL PAPER

Finned surfaces in air-cooled internal combustion engine: influence of geometry and flow conditions

2019-36-0160

View Details

X