Browse Publications Technical Papers 2002-01-2841

Turbulence Properties of High and Low Swirl In-Cylinder Flows 2002-01-2841

In previous work, Reuss [1] studied the cycle-to-cycle variation in the large-scale velocity structures of high and low-swirl in-cylinder flows of an IC engine. The vector flow fields were obtained from PIV measurements in a two-valve, pancake-shaped, Transparent Combustion Chamber (TCC) engine. In this study, the Reynolds-decomposed turbulence properties such as kinetic energy, length scales, and dissipation rate were directly measured for the two cases. The results demonstrate that, at TDC compression, the low-swirl flow is dominated by turbulence at the largest scales, whereas the high-swirl flow has a considerably lower turbulence Reynolds number. The dissipation rate and length scale calculated from mixing-length theory greatly exceeded the dissipation computed from the 2-D velocity-gradients and integral-length scales computed from the autocorrelation, respectively.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.