Browse Publications Technical Papers 2003-01-0663
2003-03-03

Development of a Methodology to Separate Thermal from Oil Aging of a Catalyst Using a Gasoline-Fueled Burner System 2003-01-0663

Typically, an engine/dynamometer thermal aging cycle contains combinations of elevated catalyst inlet temperatures, chemical reaction-induced thermal excursions (simulating misfire events), and average air/fuel ratio's (AFR's) to create a condition that accelerates the aging of the test part. In theory, thermal aging is predominantly a function of the time at an exposure temperature. Therefore, if a burner system can be used to simulate the exhaust AFR and catalyst inlet and bed temperature profile generated by an engine running an accelerated aging cycle, then a catalyst should thermally age the same when exposed to either exhaust stream.
This paper describes the results of a study that examined the aging difference between six like catalysts aged using the Rapid Aging Test (RAT) cycle (an accelerated thermal aging cycle). Three catalysts were aged using a gasoline-fueled engine aging stand; the other three were aged using a computer controlled burner system. Both systems were programmed to run aging cycles that provided the same inlet temperature and AFR profiles, and space velocity conditions. Each catalyst was evaluated using a vehicle over the FTP emissions test cycle and an AFR sweep test suing an engine test stand before and after aging. Finally, the catalysts were cored and analyzed to provide a composition and surface area comparison.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Catalyst Aging Evaluation with Exposure to 0.06 and 0.11 Percent Phosphorus Oils Using the FOCAS® Burner System

2003-01-1999

View Details

TECHNICAL PAPER

Replication of 50K Vehicle Aged Catalyst Performance Using an Engine Dynamometer Aging Cycle

972906

View Details

TECHNICAL PAPER

Variables for Emission Test Data Analysis

730533

View Details

X