Browse Publications Technical Papers 2003-01-0717
2003-03-03

The Potential of Using the Ion-Current Signal for Optimizing Engine Stability - Comparisons of Lean and EGR (Stoichiometric) Operation 2003-01-0717

Ion current measurements can give information useful for controlling the combustion stability in a multi-cylinder engine. Operation near the dilution limit (air or EGR) can be achieved and it can be optimized individually for the cylinders, resulting in a system with better engine stability for highly diluted mixtures. This method will also compensate for engine wear, e.g. changes in volumetric efficiency and fuel injector characteristics. Especially in a port injected engine, changes in fuel injector characteristics can lead to increased emissions and deteriorated engine performance when operating with a closed-loop lambda control system. One problem using the ion-current signal to control engine stability near the lean limit is the weak signal resulting in low signal to noise ratio. Measurements presented in this paper were made on a turbocharged 9.6 liter six cylinder natural gas engine with port injection. Each cylinder was individually controlled by a cylinder control module (CCM). A high turbulence combustion chamber was used to be able to operate with highly diluted mixtures. Comparisons between lean and EGR (stoichiometric) operation were made to investigate the potential of using the ion-current signal to control engine stability (cylinder to cylinder and cycle to cycle variations). A much stronger ion-current signal was found with EGR compared to lean operation, for the same load and comparable emissions.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 17% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Injected Heavy-Duty Propane Engine

961688

View Details

TECHNICAL PAPER

Development of Dedicated CNG Engine with Multipoint Gas Injection System

2008-28-0014

View Details

TECHNICAL PAPER

Turbocharger Controls

620247

View Details

X