Browse Publications Technical Papers 2003-01-1366

Performance of Microlith Based Catalytic Reactors for an Isooctane Reforming System 2003-01-1366

Use of catalytically coated short contact time (SCT) design approaches for application in mass transfer controlled reactors such as Auto Thermal Reformers (ATR's) is an area of much recent interest.
Precision Combustion, Inc. (PCI) has developed an efficient and compact ATR using ultra-short channel length, high cell density SCT substrates (Microlith®). PCI has also extended this Microlith technology to other fuel processor reactors that operate at lower temperatures and are not mass transfer limited. Namely, reactors for the Water Gas Shift (WGS) and Preferential Oxidation (PROX) of CO have been developed. Due to the higher surface area per unit volume of the Microlith substrate compared to conventional monoliths, size advantages have been observed for these reactions, which are more kinetically controlled. This results not only in shortened startup times and quick load following capability but also allows much smaller and lighter reactors - required attributes for automotive fuel cell applications. In this paper, experimental data on the performance of Microlith based ATR, WGSR and PROX reactors for reforming isooctane is presented. Transient and durability characteristics have also been included and compared to Department of Energy (DOE) targets.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

The Effects of Octane Enhancing Ethers on the Reactivity of a Primary Reference Fuel Blend in a Motored Engine


View Details


Microwave Plasma Carburization of Steel Alloys at Atmospheric Pressure


View Details


Simulation and Visualization of Some Processes Concerning Gases Transport Properties and Gaseous Fuel Combustion, Starting from the Molecular Collision Theory


View Details