Browse Publications Technical Papers 2003-01-1462

Dynamic Characteristic Analysis of a Hydraulic Engine Mount with Lumped Model Based on Finite Element Analysis 2003-01-1462

Hydraulic Engine Mount (HEM) is now widely used as a highly effective vibration isolator in automotive powertrain. A lumped parameter model is a traditional model for modeling the dynamic characteristics of HEM, in which the system parameters are usually obtained by experiments. In this paper, Computational Fluid Dynamics (CFD) method and nonlinear Finite Element Analysis (FEA) are used to determine the system parameters. A Fluid Structure Interaction (FSI) FEA technique is used to estimate the parameters of volumetric compliances, equivalent piston area, inertia and resistance of the fluid in the inertia track and decoupler of a HEM. A nonlinear FEA method is applied to determine the dynamic stiffness of rubber spring of the HEM. The system parameters predicated by FEA are compared favorably with experimental data and/or analytical solutions. A numerical simulation for an HEM with an inertia track and a free decoupler is performed based on the lumped model and using the estimated system parameters, and again the simulation results are compared with experimental data. The calculated time histories of some variables in the model, such as the pressure in the upper chamber, the displacement of the free decoupler and the volume flow through the inertia track and the decoupler, under different excitations, elucidate the working mechanism of the HEM. The work conducted in the paper demonstrates that the method for estimating the system parameters in the lumped model for HEM is effective, with which the dynamic characteristic analysis and design optimization of an HEM can be performed before its prototype development, and this can ensure its high quality and low cost for development.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Optimum Design Method for Hydraulic Engine Mounts


View Details


Morphing and Parametrization Technologies for CFD Applications


View Details


Conjugate Heat Transfer and Thermo-Mechanical Heat Cycle Analysis of an Automotive Exhaust Muffler System


View Details