Browse Publications Technical Papers 2003-01-2647

Toxicological Assessment of the International Space Station Atmosphere with Emphasis on Metox Canister Regeneration 2003-01-2647

Space-faring crews must have safe breathing air throughout their missions to ensure adequate performance and good health. Toxicological assessment of air quality depends on the standards that define acceptable air quality, measurements of pollutant levels during the flight, and reports from the crew on their in-flight perceptions of air quality. Air samples returned from ISS on flights 8A, UF2, 9A, and 11A were analyzed for trace pollutants. On average, the air during this period of operations was safe for human respiration. However, about 3 hours into the regeneration of 2 Metox canisters in the U.S. airlock on 20 February 2002 the crew reported an intolerable odor that caused them to stop the regeneration, take refuge in the Russian segment, and scrub air in the U.S. segment for 30 hours. Analytical data from grab samples taken during the incident showed that the pollutants released were characteristic of nominal air pollutants, but were present in much higher concentrations. The odors reported by the crew were due to relatively high concentrations of n-butanol, and possibly other pollutants in the mixture. Later data taken during regeneration of Metox canisters that had not been subject to long-term flows showed minimal effects on air quality. Long-term trending data suggest that a disruption in atmospheric mixing between the Service Module and the U.S. Laboratory has occurred and that formaldehyde concentrations are gradually increasing in the U.S. Laboratory. Trending data also show that the releases of octafluoropropane (OFP) have subsided.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Development of Next-Generation Membrane-Integrated Adsorption Processor for CO2 Removal and Compression for Closed-Loop Air Revitalization and Analysis of Desiccating Membrane


View Details


A Process to Evaluate Advanced Technologies for Future NASA Needs


View Details


Analysis of the Effect of Age on Shuttle Orbiter Lithium Hydroxide Canister Performance


View Details