Simulation Based Optimisation for Aircraft Systems 2003-01-3014
Modelling and simulation is of crucial importance for system design and optimisation. In aeronautics, simulation has been strong in the area of flight dynamics and control. Modelling and simulation of basic aircraft systems such as hydraulic systems also has a long tradition, and the rapid increase in computational power has now come to a point where complete modelling and simulation of all the sub systems in an aircraft is possible.
There are several levels of design from requirement analysis and system architecture down to detail design, and there is a clear danger that systems engineering activities are performed only at the top level of a design. In order to have an impact on the product development process it must permeate all levels of the design in such a way that a holistic view is maintained through all stages of the design. This can be achieved if all design teams can work towards a common system model where the subsystem designs can be tested in an environment where the interaction with other sub-system and the whole aircraft can be studied.
In this paper it is discussed how the actuation system control surfaces can be simulated and optimised using a flight dynamics model of the aircraft coupled to a model of the actuation system. In this way the system can be optimised for certain flight condition by “test flying” the system. The distributed modelling approach used, makes it possible to simulate this system much faster than real time on a 650 MHz PC. This means that even system optimisation can be performed in reasonable time.