Browse Publications Technical Papers 2003-01-3227
2003-10-27

Improvement of Neural Network Accuracy for Engine Simulations 2003-01-3227

Neural networks have been used for engine computations in the recent past. One reason for using neural networks is to capture the accuracy of multi-dimensional CFD calculations or experimental data while saving computational time, so that system simulations can be performed within a reasonable time frame. This paper describes three methods to improve upon neural network predictions. Improvement is demonstrated for in-cylinder pressure predictions in particular. The first method incorporates a physical combustion model within the transfer function of the neural network, so that the network predictions incorporate physical relationships as well as mathematical models to fit the data. The second method shows how partitioning the data into different regimes based on different physical processes, and training different networks for different regimes, improves the accuracy of predictions. The third method shows how ensembling different networks based on engine operating parameters can provide greater accuracy than each of the individual networks. Although these methods have been implemented for engine computations, they might hold promise for other applications too.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Research on Road Simulator with Iterative Learning Control

2009-01-2908

View Details

TECHNICAL PAPER

Real-Time Hardware-in-the-Loop Simulation for Drivability Development

2017-01-0005

View Details

TECHNICAL PAPER

Cooling Module Performance Investigation by Means of Underhood Simulation

2005-01-2013

View Details

X