Browse Publications Technical Papers 2003-01-3237
2003-10-27

Effects of Substantial Spark Retard on SI Engine Combustion and Hydrocarbon Emissions 2003-01-3237

Experiments were conducted to determine the effects of substantial spark retard on combustion, hydrocarbon (HC) emissions, and exhaust temperature, under cold engine conditions. A single-cylinder research engine was operated at 20° C fluid temperatures for various spark timings and relative air/fuel ratios. Combustion stability was observed to decrease as the phasing of the 50% mass fraction burned (MFB) occurred later in the expansion stroke. A thermodynamic burn rate analysis indicated combustion was complete at exhaust valve opening with -20° before top dead center (BTDC) spark timings. Chemical and thermal energy of the exhaust gas was tracked from cylinder-exit to the exhaust runner. Time-resolved HC concentrations measured in the port and runner were mass weighted to obtain an exhaust HC mass flow rate. Results were compared to time averaged well downstream HC levels. Quenching experiments, with carbon dioxide injected at the exhaust valve seats, were conducted to quantify cylinder-exit HC levels. Engine operation with a relative air/fuel ratio 10% lean of stoichiometric resulted in the lowest observed HC emissions. Port HC oxidation ranged from 15% to 37% with additional HC reductions (40-50%) in the runner noted with after top center spark timings. Fuel-rich engine operation with secondary air injection into the exhaust port yielded the lowest HC levels and highest exhaust gas enthalpy observed.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

NOx Reduction Kinetics Mechanisms and Radical-Induced Autoignition Potential of EGR in I.C. Engines Using Methanol and Hydrogen

2001-28-0048

View Details

TECHNICAL PAPER

Misfiring Control in Current Cycle at Engine Start Employing Ion Sensing Technology

2009-01-2713

View Details

TECHNICAL PAPER

Nitrogen Dioxide in Engine Exhaust

790691

View Details

X