Browse Publications Technical Papers 2003-01-3405
2003-11-10

Underhood Thermal Management of Off-Highway Machines Using 1D-Network Simulations 2003-01-3405

In off-highway machines, the separate engine compartment suppresses noise to meet regulations and spectator requirements. The enclosed engine compartment results in higher underhood temperatures, higher cooling heat loads, and increased charge air temperatures. Since higher temperatures can reduce component durability and life, analysis of underhood thermal conditions is important for identification of thermal hot spots and assurance of adequate air cooling. The product development cycle of design-analysis-simulation-test involves numerous iterations to come up with an acceptable design. Thus, rapid and accurate simulation techniques are desirable.
The objective of this study was to develop a 1-D thermal-fluid network model using commercial software FLOWMASTER. This 1-D model serves as a tool to predict/analyze the interactions of engine structure with air, coolant, and oil loops for machine thermal performance. Accurately modeling the engine thermal system requires both experimental and computational fluid dynamics (CFD) data, with boundary conditions obtained from well-controlled laboratory experiments. About 96% of the fuel energy was accounted for during the tests; 3-D CFD simulations were utilized in determining air flow fields and engine-surface heat fluxes.
With the thermal interactions modeled successfully, underhood-temperature predictions agreed within 10% of measurements for different inlet locations and airflow rates. Developing a package of 1-D and 3-D co-simulations is underway as followup of this work.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Sizing of Coolant Passages in an IC Engine Using a Design of Experiments Approach

2015-01-1734

View Details

TECHNICAL PAPER

A Multi-Dimensional Approach to Truck Underhood Thermal Management

2001-01-2785

View Details

TECHNICAL PAPER

Improving Truck Underhood Thermal Management Through CFD

2002-01-1027

View Details

X