Browse Publications Technical Papers 2003-06-0153
2003-05-19

VEHICLE-TO-VEHICLE FULL FRONTAL CRASH OPTIMIZATION USING A CAE-BASED METHODOLOGY 2003-06-0153

This paper describes a CAE-based methodology used to identity major factors influencing vehicle structural performance and crash energy management in full-frontal vehicle-to-vehicle collisions. Finite element models of an “average” SUV and an “average” full-size passenger vehicle were used in this study. The determining factors of vehicle compatibility in multi-vehicle collisions are relative mass, relative stiffness and relative geometry. Four parameters of the average SUV, mass, fore rail length, fore rail thickness, and fore rail height were selected as design variables. A uniformly spaced Optimal Latin Hypercube sampling technique was employed to probe the design space of these variables using thirteen simulation runs.
Dash intrusions in the passenger vehicle and the absorbed collision energy in both vehicles were selected as response variables. Polynomial response surfaces were constructed, based on the simulation results, and found to fit the results well (R2= 0.98 for dash intrusion and R2= 0.85 for absorbed energy). As a result, prediction equations for maximum dash intrusion and absorbed collision energy as a function of the vehicle design variables were obtained. Results indicated that aligning front-end structures (specifically fore rail heights between impacted vehicles) in vehicle-to-vehicle full-frontal collisions has greater effect on reducing dash intrusions and managing crash energy than mass and variables associated with stiffness. An optimal design solution could also be determined with the appropriate introduction of constraint conditions.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Airbag Modeling Using Initial Metric Methodology

950875

View Details

TECHNICAL PAPER

Automated Performance Evaluation of a Vehicle’s Space-Frame Design Parametric Model

2009-01-1238

View Details

TECHNICAL PAPER

Linkage Design Using the LINCAGES© Package

830801

View Details

X